

Planbureau voor de Leefomgeving

COST-EFFECTIVE HEAT-TRANSITION

VESTA MAIS MODEL

Folckert van der Molen PBL - Netherlands Environmental Assessment Agency

Reducing natural gas use in the built environment

Multi-level approach				
National	Climate agreement 2030			
Regional	RES - Regional Energy Strategy			
Municipal	Transition vision heat 2021			
District	Energy implementation plan			

National targets:

- Reducing CO2 emissions by 3,4 Mt in 2030
- Reducing natural gas demand in the built environment
- Up to 2 million homes to be disconnected from natural gas

Regional case study using the Vesta MAIS model

- The Heat Transition is taking shape on the municipality level with regional cooperation, applying localized solutions
- Insight into the interactions between national climate policy and the regional Energy Transition
- Preparation for the monitoring, analyzing and eventual adding-up of many Regional Energy Strategies

Drechtsteden region

Region characteristics

- 7 municipalities
- 270.000 inhabitants
- 144.000 buildings
- Currently using 7 petajoule of natural gas every year for heating
- Ambition: zero natural gas in 2035

Regional cooperation for the energy transition

Energy Strategy Drechtsteden - signed in September 2017 Guidelines for Cooperation – signed in March 2018

Further specified in working groups with municipal authorities and local stakeholders. For heat these include:

Detailed analysis of available options

Looking for:

Ways to achieve 90% reduction of natural gas demand by 2035

Comparing these by:

<u>Technical</u> measures required, resulting <u>energy</u> use & total collective <u>cost</u>

To answer:

- 1. How can the goal be achieved with the lowest total collective cost?
- 2. Which policies can create solid business cases for individual actors to make the required investments?
- 3. Which groups of actors will face the costs and the benefits?

Planbureau voor de Leefomgeving

General overview of Vesta MAIS

Aimed at technical and economic analysis to aid policy-makers concerned with <u>heating in the built environment</u>

- Existing residential and commercial real estate
- Optional to include future construction
- *Optional* to include horticulture

Models energy flows, transactions and technical measures

Typically used as a simulation of a starting state, which can be subjected to diverse stimuli to create <u>scenario's</u>.

Starting state

Existing building stock: demand side

- Input: Type of building
- Input: Construction period
- Input: Energy efficiency class (label)
- Calculated: Energy demand, including costs and emissions
 - Natural gas
 - Electricity (for heating and appliances)
 - Heat

Existing and potential heat sources: supply side

- Input: Known heat sources, including emissions
- Input: Current use of heat sources, including costs
- Input: Potential areas for geothermal heat production
- Input: Potential areas for underground thermal storage

Technical starting point Supply-side

Industrial waste-heat potential

VES

Geothermal potential

Gas turbine

Waste processing plant

Natural gas is cheap and ubiquitous

Potential heat sources Current district heating Municipal boundaries

Technical starting point Supply-side Zooming in: Sup municipality of Papendrecht

ES

Technical starting point Demand-side

PBL.NL / VESTA

Type & Construction period

residential, planned construction residential, between 2006 and 2014 residential, between 1992 and 2005 residential, between 1975 and 1991 residential, between 1965 and 1974 residential, between 1946 and 1964 residential, before 1946 commercial, between 1992 and 2005 commercial, between 1975 and 1991 commercial, between 1965 and 1974 commercial, between 1946 and 1964 commercial, before 1946 mixed, between 1992 and 2005 mixed, between 1965 and 1974 mixed, between 1975 and 1991 mixed, between 1946 and 1964 mixed, before 1946

Modeling future developments

Autonomous influences up to 2050 (baseline)

- Input: new construction and redevelopment
- Input: climate impact on heat demand
- Input: curves for investment cost of technical measures
- Input: curves for future energy prices

Vesta MAIS determines business cases for a set of potential technical measures and applies them *according to user criteria*.

- Renovations of buildings
- Electrification of individual heating systems
- > Heat networks over 70 °C (waste heat, geothermal or biomass)
- > Heat networks under 60 °C (e.g. with thermal energy storage)

User criteria:

Which years? Collective cost or actor cost? Which order of operations?

Four ways to achieve 90% reduction of natural gas demand in 2035

Current trajectory for reference.

(total collective cost mln. € / year)

Four ways to achieve 90% reduction of natural gas demand in 2035

Current trajectory for reference.

(total collective cost mln. € / year)

Limited renovation & mixed heating techniques

2015: Energy use before transition

2035: Energy use after transition

Priorities for technical measures

- 1. Renovation
- 2. Collective heat > 70 °C
- 3. Collective heat < 60 °C
- 4. Individual electrification

Energy Efficiency Class – all residential buildings	Before (2015)	After (2035)	
A+	5.745	64.395	
B / C	69.230	48.400	
D / E / F / G	47.286	15.466	

From now to 2035

Two types of neighborhoods in 2035:

- 1. Low capital investment: requires high temperature heating high energy use
- 2. High capital investment: can suffice with low temperature heating low energy use

Creating feasible business cases for individual actors. Some policy options:

- Taxes on natural gas raised by € 0,20 / m^3 by 2035
- Taxes on electricity lowered by € 0,07 / kWh by 2035
- Subsidizing heat-infrastructure (collective)
- Subsidizing renovations and electric heat-pumps (individual)

Actor costs	Starting point (2015)			
in million euros per year	Energy companie S	Real estate owners/users		
Natural gas	3	81		
Electricity		107		
District heating	-29	29		
Capital cost	16			
Taxes	5	86		
Subsidies				
Total actor cost	-5	302		

Actor costs	Starting po	oint (2015)	2035, following current trajectory for reference		
in million euros per year	Energy companie S	Real estate owners/users	Energy companies	Real estate owners/users	
Natural gas	3	81	7	76	
Electricity		107	1	113	
District heating	-29	29	-56	56	
Capital cost	16		28	22	
Taxes	5	86	9	113	
Subsidies					
Total actor cost	-5	302	-11	375	

Actor costs	Starting point (2015)		2035, followin trajectory for	ng current reference	2035 with Heat Transition using policy-instruments (subsidizing up to 40%)	
in million euros per year	Energy companieS	Real estate owners/users	Energy companies	Real estate owners/users	Energy companies	Real estate owners/users
Natural gas	3	81	7	76	10	15
Electricity		107	1	113	9	111
District heating	-29	29	-56	56	-108	108
Capital cost	16		28	22	61	48
Taxes	5	86	9	113	28	35
Subsidies					-8	-19
Total actor cost	-5	302	-11	375	-6	298

Conclusions

	Local		National
•	28% reduction of natural gas demand is possible without additional policy.	•	Additional policy on a national level is required to create viable business- cases for individual actors
•	Rising cost of energy will lead to higher costs for actors in the future unless technical measures are taken.	•	However, these measures require financial support: a national discussion is needed to allocate the costs
•	It is essential to find the right technical solution for each particular neighborhood, based on local conditions and the technical starting point.	•	If we can determine which type a neighborhood is, many technical decisions follow logically from that

Conclusions

Local

- Higher investment means lower future energy use and leads to lower long-term total collective cost.
- Minimizing investments means higher future energy use and higher long-term total collective cost.
- Both ways can realize the goal of decarbonization.

National

Actors will optimize their preferred costs, unless incentive structures are aligned with the collective optimum

- For 90% reduction of natural gas demand in this region, costs for individual investors must fall by up to 40%.
- The national challenge for implementation is to either divide these costs, or realize cost-reduction up to 40%

Follow-up

Full publication on pbl.nl/vesta (Dutch)

Folckert van der Molen (2018), Technisch en economisch potentieel voor een aardgasvrije gebouwde omgeving in de regio Drechtsteden, Den Haag: PBL.

Link to Vesta MAIS model (open source, open data) https://github.com/RuudvandenWijngaart/VestaDV

Contact us if you are interested in using the model, or other questions folckert.vandermolen@pbl.nl