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Abstract 

The transport sector is growing fast in terms of energy use and accompanying greenhouse 

gas emissions. Integrated assessment models (IAMs) are used widely to analyze energy 

system transitions over a decadal time frame to help inform and evaluating international 

climate policy. As part of this, IAMs also explore pathways of decarbonizing the transport 

sector. This study quantifies the contribution of changes in activity growth, modal structure, 

energy intensity and fuel mix to the projected passenger transport carbon emission 

pathways. The Laspeyres index decomposition method is used to compare results across 

models and scenarios, and against historical transport trends. Broadly-speaking the models 

show similar trends, projecting continuous transport activity growth, reduced energy 

intensity and in some cases modal shift to carbon-intensive modes - similar to those 

observed historically in a business-as-usual scenario. In policy-induced mitigation scenarios 

further enhancements of energy efficiency and fuel switching is seen, showing a clear break 

with historical trends. Reduced activity growth and modal shift (towards less carbon-
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intensive modes) only has a limited contribution to emission reduction. Measures that could 

induce such changes could possibly complement the aggressive, technology switch required 

in the current scenarios to reach internationally agreed climate targets.   

Keywords: passenger transportation, energy modelling, model comparison, low emission 
scenarios 

 

1. Introduction 

The increased use of motor vehicles and airplanes has led to a higher mobility, flexibility and 

accessibility of the current population. At the same time, this has also resulted in social and 

environmental impacts at both the international/national and local scales [1]. At the local 

scale, transport activities cause urban air pollution, noise, congestion, water and soil 

degradation, asthma, obesity, road deaths and social and urban fragmentation [1]. At the 

international/national scale, mobility contributes to greenhouse gas emissions, trans-

boundary air pollution, and the depletion of oil resources. Global greenhouse gas emissions 

from transport doubled over the 1970–2010 period to 7.0 GtCO2-eq, increasing at a faster 

rate than any other end-use sector [2]. Strategies to decrease transport energy use, or even 

demand growth, can clearly lead to many co-benefits [3]. 

Integrated assessment models (IAMs) are commonly used to explore energy system 

transitions over the long term to meet global climate targets. Their strength lies in analyzing 

trade-offs and synergies across economic sectors, and providing insights in the costs and 

benefits of different policies [4]. Due to the importance of the transport sector as a final 

energy consumer, most of these models also include a relatively detailed representation of 

developments in this sector and its potential to contribute to mitigating GHG emissions. 

Girod et al. [5] and Pietzcker et al. [6] have performed comparison studies of transport 

sector representation in energy system models, including IAMs. Both studies show that, in 

these models transport CO2 emission reduction potential depends highly technological 

change and changing fuel composition, which would breakthrough in the second half of the 

century. However, there is a large difference across models regarding the relative potential 

of the sector to mitigate.  

There are different possible Interventions to reduce the impact of transport: 1) lower 

transport demand, 2) shift transport modes towards low carbon-intensity modes, 3) reduce 

the energy intensity of technologies and 4) reduce the emissions intensity of fuels [7]. 

Creutzig et al. [8] argue that limiting demand growth by shifting to more efficient modes and 

reducing the distance traveled has limited application in global IAM scenarios and emissions 

could be further reduced than currently suggested. Local studies often show that behavioral 

and infrastructure policy interventions, especially in urban areas, impacting modal shift, 

distance travelled and technological change could be effective measures to decrease 

emissions [7]. Moreover these measures can already impact transport emissions in the short 

term and can in fact potentially avoid infrastructure path dependency [8, 9].  



3 

 

In this study we look at a large set of IAM transport model projections and determine the 

relative contribution of energy efficiency, fuel shift, modal shift and activity change through 

decomposition analysis. This allows us to improve the understanding of these scenarios and 

to compare the application of the models in a transparent manner, by relating model 

structure to scenario results. Moreover, the disaggregation can provide further insight into 

how specific projected components compare against historical transport trends and, by 

extension, can potentially improve translation into and comparison with local measures, 

such as those highlighted by Creutzig et al. [8]. Secondly, input data on technology costs are 

compared in an attempt to further understand uncertainties underlying model differences 

in projections of vehicle and fuel choice. 

The article is structured as follows: Section 2 discusses the method applied. The subsequent 

Section 3 discusses the results of a GHG mitigation scenario that is evaluated against a 

common baseline, focusing on specific GHG mitigation interventions. In Section 4, specific 

attention is given to technology input data representation in the USA affecting light-duty 

vehicle (LDV) choice. In Section 5, we discuss the results and identify key transport model 

developments that rank high in terms of policy relevance, and in Section 6 we come to our 

conclusions.  

 

2. Method 

 

2.1 Description of the IAM models 

Eleven IAMs were included in this study, namely AIM/CGE, DNE21+, GCAM, GEM-E3, 

Imaclim-R, IMAGE, POLES, MESSAGE, REMIND, TIAM-UCL and WITCH. A qualitative 

questionnaire was sent to the modeling teams to take stock of their transport sector 

representations. This section discusses the concept and solution method of these models, 

along with the transport modes accounted for. In addition, Tables A.1 and A.2 in the 

supplementary material provide a summary of the responses. Several papers in this special 

issue include more detailed presentations of the transport modeling in GEM-E3 [10], 

MESSAGE [11], AIM/CGE [12], Imaclim-R [13] and WITCH [14]. 

IAMs differ in the way they represent the transport sector. The ones with greater transport 

detail (i.e., compared to the ones described herein) use a hybrid approach to model the 

transport demand and use of energy in the transport sector. In the hybrid approach a top-

down demand formulation, relating demand to population and economic growth, is 

combined with the explicit modelling of modes and technology options per mode. Clearly, 

the degree of detail determines how well models are able to represent the key dynamics of 

the various transport sub-sectors and the different ways to mitigate emissions.  

Transport demand in AIM-CGE is derived using a top-down method, where energy demand 

is input to a production function driven by gross domestic product (GDP) growth. In WITCH, 

the service demand of the explicitly modeled LDV mode is related to GDP and population, 
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while the rest of the transport sector is indirectly comprised in the more general non-

electric sector which is an input to a nested constant elasticity of substitution (CES) 

production function. Also the REMIND transport projections are based on a nested CES 

production function, but includes a second step in which three different technology options 

for the LDV mode and one generic end-use technology representation for the other modes. 

In POLES, DNE21+ and TIAM-UCL, GDP per capita drives modal service demand through 

income elasticities, while being sensitive to fuel prices. GEM-E3 transport demand depends 

on bilateral trade flows and on consumer preferences and budgets. 

To capture modal shift dynamics and the transition between modes as countries develop 

(i.e., wealthier individuals use higher-speed modes [15]), a few models relate the demand 

per mode to mode speed and cost, MESSAGE and IMAGE both use travel money budget 

(TMB) and travel time budget (TTB) as top-down elements to constrain per capita person 

kilometers per mode in combination with the price and speed of the modes to project 

transport service demand per mode [16]. GCAM uses a similar approach, where the speed 

of the transport mode and vehicle operating cost affect the service price, which is related to 

income levels to determine the energy service demand. Imaclim-R travel demand and modal 

split are calculated endogenously from household utility maximization under constraint of 

revenues and time spent, assuming that mode speed is affected by utility of infrastructure. 

Girod et al. [5] previously found that income-induced shifts to faster modes are more 

pronounced in the models that consider travel time.  

Most IAMs are able to meet the overall service demand with different transport modes (see 

Table 1, e.g. cars, buses, air planes and trains), with the number of discrete modes in 

passenger transport ranging from one to seven modes. In several models, including DNE 

21+, AIM-CGE and TIAM-UCL, the share of each mode is set exogenously. IMAGE, MESSAGE, 

Imaclim-R, POLES, REMIND, GEM-E3 and GCAM calculate the modal shares endogenously 

based on cost and, in some models, time and saturation constraints. WITCH features LDVs 

only.  

Within any mode, vehicle technologies compete on the basis of cost, either through a logit 

distribution (GEM-E3, GCAM, POLES, IMAGE and Imaclim-R) or least-cost optimization 

(MESSAGE, REMIND, TIAM-UCL, WITCH and DNE21+). AIM/CGE does not explicitly model 

technologies. POLES takes exogenous assumptions on infrastructure development into 

account as a constraint to vehicle choice. The parameters used to describe the costs of 

transport technologies as well as their future development differ per model. REMIND, GEM-

E3 and WITCH, for example, assume that the investment costs for currently immature 

technologies (battery-electric vehicles (BEV), plug-in hybrid vehicles(PHEV), fuel cell vehicles 

(FCV)) decrease endogenously as a function of deployment, following a global learning rate. 

In Imaclim-R, technology learning rates are applied to all technologies. In other models, the 

costs of some or all technologies decrease exogenously over time.  

Table 1 Model description and passenger mode represented in the IAMs. 
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1)Fujimori, Masui [17], 2)Sano, Wada [18], 3)Kyle and Kim [19], 4)Karkatsoulis, Kouvaritakis [20],  5)Waisman, 
Guivarch [21] 6)Girod, van Vuuren [16],  7)Girod, van Vuuren [5],8)Riahi, Dentener [22], 9)Luderer, Bosetti 
[23],  10)Anandarajah, Pye [24], 11)Bosetti and Longden [25],and Longden [26], 1:11EU-FP7-ADVANCE [27]

 AIM/CGE1 DNE21+2 GCAM3 GEM-E34 IMACLIM-R5 

Model concept General 

equilibrium 

Partial 

equilibrium  

Partial 

equilibrium 

General 

equilibrium 

General 

equilibrium  

Solution method Mixed 

complementarity  

Intertemporal 

optimization 

Recursive 

simulation 

Recursive 

dynamic model 

solved with mixed 

non-linear 

complementarity 

Recursive 

dynamics 

Passenger modes Train, aviation, 

bus, LDV 

LDV, bus 

 

LDV, bus, 

2W&3W, aviation, 

train 

LDV, aviation, 

train, bus, ship 

Aviation, bus & 

rail, cycling & 

walking, LDV 

IMAGE6 POLES7  MESSAGE8 REMIND9 TIAM-UCL10 WITCH11 

Partial 

equilibrium  

Partial 

equilibrium  

Partial 

equilibrium 

model soft-linked 

to general 

equilibrium mode 

Hybrid model that 

couples an 

economic growth 

model with a 

detailed energy 

system model  

Partial 

equilibrium 

Hybrid model 

that couples an 

economic 

growth model 

with a detailed 

energy system 

model  

Recursive 

dynamic  

Recursive 

simulation 

Linear 

optimization 

Inter-temporal 

optimization  

Linear 

optimization 

Non-linear 

inter-temporal 

optimization 

and game 

theoretic setup 

LDV, bus, train, 

aviation, cycling 

and walking 

LDV, bus aviation, 

train  

LDV, bus, 2W, 

aviation, train 

LDV, rail, aviation 

and bus 

LDV, bus, 

2W&3W, train, 

aviation 

LDV 
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2.2 Transport model scenarios 
 
Two scenarios have been used to examine the main passenger transport model outputs 

(freight transport projections are not compared for the purposes of this paper): 

 a baseline scenario (no explicit climate policies beyond those already in place); 

 a mitigation scenario (aiming to stabilize atmospheric concentrations of GHGs at 450 

ppm CO2-eq in 2100, compatible with the long-term target of achieving a 2°C 

increase in global temperature at the end of the century with respect to pre-

industrial levels); 

The baseline is the standard run scenario of the IAMs that represents a business-as-usual 

state where no explicit climate policy is assumed but current policy trends (e.g. efficiency) 

are in some cases extrapolated. Most model teams1 are currently using or have harmonized 

their drivers to the population and income projections of the “middle of the road” shared 

socioeconomic pathway (SSP2) scenario, which assumes that economic and social trends 

continue in the future following the current patterns [28]. Projected GDP and population are 

shown in Figure 1; in some models these are scenario drivers while in others they are model 

outputs. There are some differences in GDP/capita visible already in the base year but in 

particular in the long term. Population projections are very similar, with the exception of 

POLES after 2030.  

  

Figure 1 a) global population b) global GDP (MER) per capita. 

2.3 Data analysis 
 

The Laspeyres index decomposition method is used to quantify the contribution of the 

changes in components (corresponding to the earlier mentioned potential intervention 

strategies) to the aggregate emissions in the IAM transport model projections. This method 

has been used in energy research in recent decades to understand historical trends. There 

                                           
1 Models not harmonized to the SSP drivers are POLES, using UN projections of demographic 
drivers, and MESSAGE which is based on a Global Energy Assessment (GEA)-Mix storyline for 
population and GDP growth. GEM-E3 drivers are not fully harmonized but close to SSP2 
projections.  
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are different decomposition methods and the advantages and disadvantages have been 

discussed extensively in the literature [29] [30]. Even though there are more sophisticated 

decomposition methods with factor and time reversal properties, the Laspeyres index is easy 

to interpret which, in this large multi-model comparison study, is an advantage. Moreover 

this method has been used in several studies to analyze historical transport sector 

developments across global regions and for a straight forward comparison the same method 

is applied [31-33]. We use the following variant of the IPAT formula [29] to compute the 

index: 

 

      (Eq. 1) 

The formula shows a disaggregation of total CO2 emissions from the transport sector into a 

combination of: 

i) population in capita;  

ii) the average per capita distance travelled in passenger km/capita (activity);  

iii) the share of the different transport modes in fulfilling this travel demand in 

passenger-km/passenger-km (modal share of each mode i); 

iv) the energy used per passenger km traveled for each mode in MJ/passenger-km 

(energy intensity of each mode i); 

v) the CO2 emissions per unit of energy consumed in g/MJ (fuel mix of each fuel j 

used per mode i). 

Combining the last two components, the CO2 emissions per passenger kilometer can be 

derived, which represents the CO2 intensity per mode. Changes in these components are not 

necessarily independent from each other; for example, an increase in fuel prices can lead to 

a change in modal share as well as a decrease in travel activity. It does however give a 

measure of the relative importance of the change in each of the components in the 

development of CO2 emissions. 

The Laspeyres index indicates the contribution of the annual change in a single component 

to the projected CO2 emissions, holding the others at their base year levels (in this analysis 

2010, 2030 or 2050). For example activity growth affecting CO2 emissions is calculated as: 

        (Eq. 2) 

where At is the total passenger kilometers in year t and A0 is the total activity in the base 

year. The Laspeyres index represents the annual average change δA in the period between 

the years t and t0: 
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    (Eq. 3) 

The index calculation shown in Equation 3 has been used 1992 by Scholl et al. [33] to 

compare developments in energy use and CO2 emissions in – amongst others –  the USA, 

Japan, France, former West Germany, Italy, the UK, Denmark, Norway and Sweden over the 

1973–1992 period. The study found that activity growth is the main contributor to the 

increase in CO2 emissions in these regions. In the countries that are part of the Organization 

for Economic Co-operation and Development (OECD), passenger kilometers per capita grew 

by 37% on average in the 1973–1992 period. In most countries the modal structure shifted 

from bus and rail to automobiles and airplanes. The increase in car ownership, driven by 

growth in income, expanding suburbs, and greater female participation in the workforce, led 

to an increase in activity. Higher income along with a decrease in the cost of flying led to a 

larger share of air travel.  

The change in CO2 emissions as a result of the modal shifts was however relatively small 

compared to the contribution made by activity growth. Scholl et al. found that shifting 

modes in some countries led to unexpected effects and that the impact on total CO2 

emissions can be time dependent [33]. In Japan, for example, the CO2 intensity of air travel 

dropped from the most intensive mode to just below the value of cars in 1992. Shifting to air 

transport therefore would result in a decrease in total CO2 emissions, while in earlier years it 

had the opposite effect [33]. 

A more recent study running up to 2008 showed that the combination of slower activity 

growth and decline in energy intensity has led to stable or even declining transport GHG 

emissions in some OECD countries in recent years [31]. These examples illustrate the 

relevancy and type of analysis that can be performed through the decomposition method, 

that can improve understanding of developments contributing to GHG emissions. 

3. Global trends in IAM transport projections 

3.1 Transport carbon emission pathways 

Figure 2 shows the direct and indirect passenger transport emissions2 projected by the 

eleven IAMs in the baseline and GHG mitigation scenarios at the global level. All models, 

show an increase in direct emissions between 2010 and 2050 in the baseline, although the 

size of this increase clearly differs. In 2100, the projected emissions range (between 4 and 12 

Gt/year) is further amplified. The models have followed different baseline emission 

pathways, either continuous increase until 2100, saturation, or even peak-and-decline. In 

the mitigation scenario, all models show a significant decrease in transport emissions 

compared to the baseline; this is necessary to achieve the stringent, long-term climate 

                                           
2 The passenger projections of REMIND and WITCH only account for LDV transportation. 
GEM-E3, POLES and TIAM-UCL emissions include total aviation, and not specific aviation for 
passenger transport purposes. DNE21+ and Imaclim-R do not account for rail transport 
explicitly (see Table 1). DNE21+ and GEM-E3 projections run to 2050 and Imaclim-R to 2070.  
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target. However, whereas direct emissions are less than one Gt in some models, in others 

they are comparable to base year values.  

The lower panel of Figure 2 shows the indirect emissions from electricity and hydrogen use 

in the transport sector, calculated by using the average emission intensities of the models of 

electricity and hydrogen production3 to enable straight-forward comparison across the 

models. Zero carbon emissions are assumed for biofuels, thus the indirect emission figure 

indicated the degree of electrification. Transport electrification takes place in all models, 

especially between 2050 and 2100. Whether electrification of transport will actually lead to 

lower emissions will depend on the fuel production process.  

 
Figure 2: Passenger transport direct (top) and indirect (bottom) CO2 emissions projected by 

IAMs in baseline (transparent color) and mitigation (solid color) scenarios. Average CO2 

intensity factors for hydrogen and electricity production across models are used for the 

indirect emissions calculation. REMIND and WITCH results only include LDV emissions.  
 

3.2 Laspeyres index scenario decomposition 

To untangle the underlying dynamics that lead to the models projected pathways, the  

Laspeyres indices are calculated for several components (Table 2): activity (pkm), structure, 

energy intensity (MJ/pkm) and fuel mix (g/MJ). The analysis focuses on direct emissions. The 

Laspeyres index is calculated for three time periods, namely 2010–2030, 2030–2050 and 

2050–2100. As REMIND and WITCH only model LDV explicitly as a passenger mode, 

structural change – which refers to mode shifting – does not play a role in these models 

projections. The results of eleven IAMs are compared to Millard-Ball et al. [31] for a selection 

                                           
3 In the mitigation scenario the average electricity emission factor across models is negative 
(this is not the case for all models) at the end of the century due to biofuel use combined 
with carbon capture and storage use for electricity production. 
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of OECD countries in the 1973–2007 period, which is summary of data collected by Scholl et 

al.  [33] and Schipper [34] over a long time frame.  

Table 2: Laspeyres index decomposition of activity, structure, energy intensity and fuel mix 
contributing to direct CO2 emissions in IAM passenger transport model projections. The 
index value indicates the annual rate of change in emissions with respect to the base year 
if only that component changes while the other components remain constant. WITCH and 
REMIND show results at the LDV level. Annual change rates higher than 1% are highlighted 
in bold.  

  Activity Structure Energy intensity Fuel mix 

  BAU 450 BAU 450 BAU 450 BAU 450 

AIM/CGE 2010-2030 1.1% 1.0% -0.2% -0.2% -0.2% -0.5% 0.0% -0.2% 

 2030-2050 0.6% 0.6% 0.0% -0.1% -0.4% -1.2% 0.0% -0.2% 

 2050-2100 0.9% 0.8% 0.0% 0.0% -0.4% -0.6% 0.0% -0.2% 

DNE21+ 2010-2030 0.5% 0.5% 0.1% 0.1% -0.3% -0.3% 0.0% -0.2% 

 2030-2050 0.2% 0.2% 0.0% 0.0% -0.1% -1.2% -0.1% -1.2% 

GCAM 2010-2030 0.5% 0.5% 0.2% 0.1% -0.5% -0.5% -0.1% -0.1% 

 2030-2050 0.3% 0.3% 0.2% 0.2% -0.3% -0.3% -0.2% -0.4% 

 2050-2100 0.4% 0.2% 0.4% 0.3% -0.1% -0.2% -0.1% -0.6% 

GEM-E3 2010-2030 0.8% 0.7% 0.0% 0.0% -0.5% -0.7% 0.0% -0.1% 

 2030-2050 0.9% 0.7% 0.1% 0.1% -0.5% -1.0% 0.0% -1.5% 

IMACLIM 2010-2030 0.9% 0.2% 0.0% 0.1% -0.3% -0.3% -0.1% -0.1% 

2030-2050 0.6% -0.1% 0.0% 0.0% -0.3% -1.0% -0.2% -1.3% 

IMAGE 2010-2030 0.8% 0.7% 0.1% 0.0% -0.5% -0.9% 0.0% -0.1% 

 2030-2050 0.5% 0.4% 0.2% 0.1% -0.1% -0.5% -0.1% -0.3% 

 2050-2100 0.5% 0.5% 0.0% 0.0% -0.4% -0.7% -0.6% -1.6% 

POLES 
ADVANCE 

2010-2030 0.8% 0.7% 0.0% 0.0% -0.6% -0.7% -0.4% -0.4% 

2030-2050 0.6% 0.6% 0.0% 0.0% -0.5% -0.7% -0.7% -0.9% 

 2050-2100 0.5% 0.5% 0.1% 0.1% -0.2% -0.3% -0.6% -0.7% 

MESSAGE4 2010-2030 0.8% 0.8% 0.0% 0.0% -0.8% -0.8% 0.0% 0.0% 

 2030-2050 0.7% 0.6% 0.1% 0.1% -0.1% -0.2% -0.1% -0.3% 

 2050-2100 0.6% 0.5% 0.1% 0.0% -0.2% -0.4% -0.2% -2.3% 

REMIND 2010-2030 0.7% 0.6%   -0.2% -0.2% -0.1% -0.1% 

 2030-2050 0.4% 0.3%   -0.3% -0.2% -0.2% -0.6% 

 2050-2100 0.6% 0.8%   -0.6% -1.0% -0.8% -3.1% 

TIAM-UCL 2010-2030 1.1% 1.1% 0.1% 0.1% -0.5% -0.6% 0.0% 0.1% 

 2030-2050 0.8% 0.8% 0.1% 0.0% -0.6% -1.1% -0.1% -0.4% 

 2050-2100 0.9% 0.9% 0.0% 0.0% -0.7% -0.4% -0.3% -0.9% 

WITCH 2010-2030 0.7% 0.7%   -0.6% -0.6% 0.0% 0.0% 

 2030-2050 0.5% 0.5%   -0.5% -0.6% -0.1% -0.5% 

 2050-2100 0.7% 0.7%   -0.3% -0.6% -0.4% -0.8% 

                                           
4 The MESSAGE transport module used in this study is a simpler version than used in other 
papers of the special issue (e.g.. McCollum et al., 2016). Specifically, this version is MESSAGE-
Transport V.5; yet, for the purposes of this paper, the model did not make any explicit 
assumptions about heterogeneous behavioral features among consumers 
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OECD5 1973-2007 1.0 to 3.1% 0.0 to 0.8% -0.6 to 0.3%,  

2000-2007 -0.8 to 1.8%. -0.3 to 0.2% -1.2 to 0.8%  

 

Activity growth makes a large contribution to the total CO2 emissions pathways; in some 

models, it increases by a factor five between 2010 and 2100

. In the baseline scenario, all models except REMIND and WITCH show a deceleration in 

activity growth in the second half of the century. The average annual activity change 

between 2010 and 2100 varies across models and ranges from -0.1% to 1.1%. Between 1973 

and 2007, activity growth ranged from 1.0% to 3.1% per year in the six OECD countries 

studied. Activity growth reduced over time ranging from -0.8% to 1.8% between 2000 and 

2007 [31]. This small set of countries shows a large variation in activity across the regions 

studied. Although the models’ activity growth projections are well within that range, the 

variation in global activity increase across models over the century has a significant impact 

on total CO2 emissions. Moreover, activity level differences between models within a single 

scenario are more pronounced than for a single model between the two scenarios. In other 

words: activity reduction in the mitigation scenario compared to the baseline scenario as a 

measure to decrease emissions has a limited effect according to the models.  

                                           
5 The historical OECD Laspeyres decomposition index values are based on the analysis 
performed by Millard‐Ball et al., 2011. 
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Energy intensity increased over time in some of the OECD regions evaluated by Millard-Ball 

et al. [31] but decreased in others, ranging from -0.6% to 0.3% between 1973 and 2007, and 

from -1.2% to 0.8% in more recent years (2000-2007). All models project that the global 

average energy intensity of motorized passenger transportation will decrease in the 

baseline, even though historically this has not always been the trend. Several models project 

that the energy intensity will drop more strongly in the first half of the century than in the 

second half in the baseline. REMIND, AIM/CGE and TIAM-UCL show the opposite effect over 

time and Imaclim-R and GEM-E3 show a constant decrease. In all models energy intensity 

reduces further in the mitigation scenario; it still remains within the range of reduction rates 

measured across OECD regions historically, although at the high end.  

Fuel mix has not been reported by Millard-Ball et al. [31] as historically shifting to alternative 

fuels has had limited application. 94 % of transport final energy is currently fueled by oil [2]. 

Even in the baseline all models move away from this trend with changing fuel mix impacting 

the projected transport CO2 emissions. This impact is more pronounced in IMAGE, POLES, 

WITCH and TIAM-UCL towards the end of the century. This effect is even larger in the 

mitigation scenario where the majority of the models show a high reduction in direct CO2 

emissions as a result of changing fuel mix, especially in the second half of the century. This 

could be related to electrification or increased shares of less CO2 intensive fuels such as 

biofuels or natural gas.   

Modal shift contribution might be underestimated as a result of using the Laspeyres method 

where all other factors remain at their base year level. The reason for this is that aviation, 

rail and LDV have similar base year energy intensity and CO2 intensity levels. Table 2 indeed 

shows that modal shift plays a limited role in emission changes. Consistent with historical 

trends, modal shift leads to increasing emissions in the baseline projections with the 

exception of AIM/CGE. In the mitigation scenario this trend is not reversed and is hardly 

applied as a mitigation measure in the policy scenario.  

Looking across the different models, we see that TIAM-UCL, AIM/CGE and MESSAGE – with 

high activity growth assumption – project high emissions. GCAM includes a structural shift 

towards carbon intensive modes, which explains why even with relatively low activity 

growth the projected emissions are at the higher end of the model range. Similarly, activity 

and structural change lead to increasing emissions in IMAGE and POLES, but a strong 

decrease in CO2 intensity – as a result of energy intensity and fuel mix change – resulting in 

lower total CO2 emissions: the decline in CO2 intensity of transport strongly offsets the 

increase in transport service demand. The models are comparable in their behavior in the 

sense that they show activity growth and reduced CO2 per passenger kilometer, which 

further declines as measures to meet the climate target are set. Even though the direction of 

change is the same, the differences in extent – which is especially pronounced in fuel mix 

change, but it also true for energy intensity or activity change – leads to large differences in 

projected CO2 pathways over the century. Figure 3 further illustrates this, depicting the 

increase in CO2 emission development resulting from change in a component following 
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Equation 2. IMAGE and MESSAGE for example project that CO2 intensity developments will 

reduce emissions by a factor as high as 21–22, if all other components remain at their base 

year value, and REMIND (only accounting for LDV) even goes as far as a factor -74, reaching 

full decarbonization of transport fuels. 

Figure 3: Passenger transport direct CO2 emission increase relative to 2010 due to activity, 

structure or CO2 intensity development, in accordance with Equations 1 and 2 for baseline 

(top) and mitigation (bottom) scenarios in AIM/CGE (A), DNE21+ (D), GCAM (G), GEM-E3 

(Ge), Imaclim-R (Ic), IMAGE (Ig), POLES (P), MESSAGE (M), REMIND (R), TIAM-UCL (T) and 

WITCH (W). WITCH and REMIND show results at the LDV level. 

3.3 Individual components: activity growth, structure, energy intensity and fuel mix 

The projection of structural change due to modal shift can be seen in Figure 4, which shows 

the modal shares in 2010, 2050 and 2100. The figure shows some common elements: 

 LDVs dominates passenger travel, both currently and far into the future in most 

models. 

 Most models show an increasing share of aviation at similar rates. At the level of 

individual models, MESSAGE, IMAGE, GCAM and Imaclim-R consider speed to be 

a determinant of modal choice, leading to a shift towards aviation. TIAM-UCL and 

POLES also show increased aviation shares. Train and bus shares remain similar to 

the base year in most models, although MESSAGE and GCAM show a significant 

decrease in bus usage and IMAGE a significant decrease in train usage. POLES and 
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Imaclim-R, which consider infrastructure constraints, show a reduction in LDV 

share over time. 

 There are quite clear base year differences across the models, which contribute 

to inter-model differences in the future. 

 In most models, the mitigation scenario does not lead to a significant change in 

the modal split of transport modes compared to baseline, reflecting its limited 

role in decreasing emissions in the models. AIM/CGE, DNE21+ and TIAM-UCL 

modal shares are exogenously set and therefore not responsive to a climate 

target. Imaclim-R projects more cycling and walking and MESSAGE, GCAM and 

IMAGE project reduced air travel compared to the baseline scenario.  

 
Figure 4: Passenger modal shares (structure component) in 2010, 2050 and 2100 for 

baseline (top) and mitigation scenario (bottom)6. 

 

The impact of component development on total CO2 projections is further specified in Figure 

5, which shows the global CO2 emissions per capita (indicated by the isolines), due to activity 

growth plotted against CO2 intensity, again for the baseline and mitigation scenarios7. The 

activity growth projected by the models is offset by the CO2 intensity reduction in the 

baseline and most models remain at 0.6 kg CO2/cap annually at a global level over the course 

of time. GCAM, MESSAGE and AIM/CGE are the exception with higher CO2 per capita values 

in the second half of the century. The models move away from 0.6 CO2 kg/cap in the 

mitigation scenario, mainly due to CO2 intensity reduction, with some models reaching 

values lower than 0.2 CO2 kg/cap. 

                                           
6 The Bus component for Imaclim-R also includes rail travel while the LDV component 
includes 2W & 3W. 
7 Only direct transport emissions are accounted for, and biofuels are treated as zero-carbon 
fuels 
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Figure 5: Global passenger transport activity per capita (x-axis) compared to CO2 intensity 
(y-axis) development over time. The CO2 emissions per capita are indicated by the plotted 
isolines. The left panel shows baseline and right mitigation scenario. DNE21+ and GEM-E3 
model projections run to 2050, Imaclim-R to 2070 and the rest until 2100. 
 

Figure 6 shows the carbon intensity impact of fuel mix and energy efficiency on CO2 per 

passenger kilometer. For both scenarios, this is compared to the fuel mix of 

hydrogen/electricity, biofuels and fossil-based fuels. In the baseline scenario, in most models 

the reduction in CO2 intensity is the result of energy efficiency increases, although IMAGE, 

REMIND, WITCH, TIAM-UCL and POLES also show fuel intensity reduction between 2050 and 

2100, due to switching to a mix of hydrogen, electricity and biofuel use. This is in agreement 

with the Laspeyres index results in Table 2. Most models project that average global energy 

efficiency will decrease to 0.5–1 MJ/pkm in 2100. This is a significant decrease (46–72%) 

compared to 2010 values, but in line with current estimations for drivetrain fuel 

consumption reduction potential. Already in 2030 gasoline ICE fuel consumption could 

reduce with 30-50%, while switching to alternative driving mechanisms could reduce fuel 

consumption even further.  

The higher CO2 intensity reduction in the mitigation scenario (see also Table 2) is highly 

dependent on fuel switching in all models, but also on further energy efficiency 

improvements. IMAGE, MESSAGE (from 2090), REMIND (from 2080), and Imaclim-R (from 

2060)  project that more than 80% of global passenger transport fuel use will be non-fossil in 

a scenario stabilizing at 450 ppm CO2eq. These models justifiably project relatively low 

emissions in the mitigation scenario. Both electric and hydrogen fueled vehicles, as well as 

biofuel use, are attractive alternative options in this scenario8. REMIND, Imaclim-R, IMAGE 

and WITCH show the trend of switching to biofuels in the first half of the century and then 

switching to hydrogen/electric, as found by Pietzcker et al [6], but other models do not 

follow this pathway. AIM-CGE and GCAM are more than 40% fueled by fossil fuels, which 

also explains their higher transport CO2 emissions (Figure 2). DNE21+ is the only model that 

does not shift towards electricity/hydrogen. 

                                           
8 WITCH does not take into account hydrogen 
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Figure 6: Global passenger transport energy intensity (x-axis) compared to fuel mix (y-axis) 
development in top figures. The isolines indicate emissions per passenger kilometer. The 
bottom panel shows passenger transport fuel shares over time, for baseline (left) and 
mitigation scenario (right). DNE21+ and GEM-E3 model projections run to 2050, Imaclim-R 
to 2070 and the rest until 21009.  

4. Comparing model inputs to outputs for the USA: a focus on light-duty vehicles 

So far, fuel switching – either to electricity/hydrogen or biofuels –, has proven to be an 

essential measure in IAMs to mitigate emissions from the transport sector. Models that 

project that the transport sector will remain relatively dependent on fossil fuels are at the 

high end of transport sector CO2 emissions projections in the mitigation scenario. Similarly, 

models that show fuel switching in the baseline scenario are at the low end of the baseline 

emission range.  

In an attempt to improve our understanding of differences in fuel mix projections, in this 

section we look specifically at LDV choice dynamics in the models. To standardize and 

simplify the comparison, we focus on the results for the USA region in each model. As 

mentioned in Section 2.1, vehicle choice in the models depends on cost of travel, which 

includes capital costs of the technology, efficiency, fuel prices and in some cases non-

operating costs. Capital costs are related to deployment in REMIND, GEM-E3 and Imaclim-R 

and to R&D investments in WITCH, while in other models they are fixed in time. The 

distribution between vehicles is determined by either a logit or cost-optimizing algorithm.  

                                           
9 The tenary figures at the bottom show fuel mix of LDV for REMIND and WITCH. 
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Figure 7: Difference in USA LDV fuel cell vehicle (FCV) and battery electric vehicle (BEV) 
investment costs compared to conventional vehicles (ICE) in the mitigation scenario. POLES 
and MESSAGE FCV investment cost remain to be more than 20.000 2005 USD more 
expenisve than conventional vehicles, i.e. outside the displayed range.  

Figure 7 shows the differences in capital costs of alternative vehicles compared to 

conventional (ICE) vehicles. AIM/CGE does not consider vehicle cost. BEV prices are currently 

substantially higher than conventional vehicle prices, although they have decreased rapidly 

in recent years [35]. All models show a steep decline in BEV costs in the coming decades. 

POLES, MESSAGE TIAM-UCL, REMIND and WITCH reach a fairly constant value in the second 

half of the century for both BEV and for FCV, where FCV remaining significantly more 

expensive than BEV., DNE 21+, GCAM, GEM-E3, IMAGE and Imaclim-R on the other hand 

show a continuous decrease in alternative vehicle costs, some ultimately reaching 

comparable levels to conventional vehicle costs, which would lead to fuel prices combined 

with vehicle efficiency being more dominant in determining vehicle cost.  

Comparing the techno-economic assumptions underlying the vehicle choice outcome 

represented by the fuel split shown in Figure 7, we see that different vehicle capital cost 

development assumptions do not necessarily explain different fuel distribution outcomes. 

For instance, GCAM with low electric vehicle cost projections also shows low-to-medium 

electric vehicle deployment compared with the other models. Uncertainty in the cost 

development of BEVs and FCVs can be seen in the variety of the model cost projections, but 

does not in itself explain differences in model outcomes. Consideration of non-economic 

factors such as behavioral considerations limiting alternative vehicle deployment in the 

models, optimizing vehicle choice, as well as interaction with other sectors that for example 

affect fuel prices, can also potentially play an important factor. 
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5. Discussion 

In this paper, IAM passenger transport CO2 emission scenarios from eleven global models 

have been compared by decomposing them into transport activity, modal structure, energy 

intensity and fuel mix development. The decomposition method untangles the complex 

model dynamics in to reduced form representation of the models, enabling us to compare 

the models to each other, as well as comparing them to historic trends. Some discussion on 

the applied method is provided. 

Suitability of the decomposition method 

Model comparison studies can show key model uncertainties by comparing the output of 

different models to their underlying model assumptions [36]. A decomposition method can 

be applied to identify structural changes contributing to energy consumption trends. This 

can also be used to validate the model baseline results by historic comparison, as shown by 

Marcucci et al. (2015) at the regional level [37]. Although more sophisticated methods exists, 

the Laspeyres decomposition analysis is an appropriate method to distinguish model 

dynamics underlying the projected futures. The disadvantages of the Laspeyres method 

index method have been discussed in literature [29] and include the fact that the method 

has no time and factor reversal properties, and the residual term can become large. 

However, the method is relatively easy to implement and interpret, which is an advantage in 

the large multi model study. Moreover the use of this method allows easy comparison with 

several studies on historical transport sector developments across global regions over a 

longer time [31-33], which is an important advantage.   

It should be noted that also other indicators can be calculated to compare models, both 

across a larger set of models or with historic data, such as the intrinsic income and price 

elasticities [38], also discussed as part of this special issue [39]. Where price and income 

elasticities verify demand response to economic indicators, which are often the models key 

drivers, the decomposition method here focuses on the development of physical indicators 

such as service demand and technology change.  

Discussion of the key outcomes 

Interestingly, the model results presented here show a relatively small range in annual travel 

activity growth. Empirical activity growth data for example passenger-km/capita, spans a 

much wider range than that observed across the model scenarios. Still, the rates should be 

compared to long-term averages and relatively small differences in annual rates of change 

can lead to large spreads in passenger kilometer demand projections over the century. As a 

result, activity increases by a factor of five in some models, and in others by a factor of two. 

This has a large effect on the projected transport emissions pathways, and is thus a key 

uncertainty. 



19 

 

One key observation is that activity growth and mode shift hardly contribute to mitigation in 

the IAM transport scenarios. Earlier research has compared low carbon transport scenarios 

of IAMs to those of transport sector specific models and place-based research, focusing on 

local transport, and indicate that different scientific communities have a different 

perspective and find different solutions to mitigate transport emissions. Where models (IAM 

and transport sector models) put higher emphasize on efficiency and fuel switch potential, 

place-based research often show that behavioral and infrastructure policy interventions, 

especially in urban areas, impacting modal shift, distance travelled and technological change, 

can cut transport energy use and CO2 emissions significantly [7]. These policy measures, that 

currently find limited application in IAM scenarios, could complement the drastic technology 

changes that are needed to reduce emissions [40]. Another example on modal split, is Fulton 

[41] who concluded that a high shift scenario with far greater urban passenger travel by low-

carbon public transport and non-motorized modes could lead to a 1.7 Gt reduction in 

transport emissions globally by 2050 (a 40% reduction in urban transport emissions). The 

representation of transport infrastructure development, and in particular its costs, and the 

costs of transport infrastructure policies are further explained in detail in this special issue in 

Ó Broin et al. [13]. Further research to quantify the impact of travel reduction and modal 

shift either by dynamic response or scenario design in IAM transport models would be an 

important next step. This could improve current IAM transport scenarios and make them 

less reliant on technology transition, which is uncertain. 

The high dependence of transport emission mitigation in the IAM scenarios on technology 

change (alternative vehicle adoption as well as improved efficiency) concur with previous 

IAM transport comparison studies [5, 6]. Diffusion of advanced vehicle technologies, 

however, will depend on technology development impacting costs and efficiency, as well as 

behavioral considerations. These processes are highly uncertain and this is reflected in the 

models results, which show a large range in annual fuel mix change. A comparison between 

the projected capital cost assumptions of LDV alternative propulsion mechanisms and the 

vehicle choice outcome represented by the LDV fuel split, shows that different capital cost 

assumptions do not necessarily explain different fuel distribution outcomes. Behavior or 

non-monetary considerations are often accounted for indirectly in the models by for 

example using a logit distribution, inertia assumptions or implicit discount rates. When 

taking in to account behavioral consideration a transition to advanced vehicles to mitigate 

GHG emissions can be more difficult (see the McCollum et al. [11] paper in this special issue). 

A better understanding of technology diffusion dynamics is important and, moreover, could 

provide the opportunity to explicitly analyze policies related to the transition to new 

technologies by removing these barriers to market adoption (e.g., cities installing EV 

chargers in urban areas). 

6. Conclusion 

Based on the results and the discussion, the study leads to the following conclusions. 
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The IAM models show similar trends in the baseline scenarios for the different factors 

contributing to emission changes in the transport sector: 1) continuing activity growth, 2) 

reduced energy intensity, 3) a limited impact of structural change to CO2 intensive modes 

and 4) a fuel switch towards alternative fuels. For most factors, changes in these factors are 

within the historical range. However, fuel switch forms an exception. As, the transport sector 

has historically been dominated by oil, fuel switching did not play a role. In the future, 

models expect fuel mix moves away from oil in response to increasing oil prices in several 

models, thus pushing the impact of carbon intensity on future emissions far beyond 

historical rates. 

In mitigation scenarios, reductions are mostly achieved through fuel switching and further 

enhancements in energy efficiency. In some models, activity reduction and some modal 

shifting also contribute to emission reduction (e.g. Imaclim-R), but energy intensity 

improvement and fuel switching are nevertheless much more important. The enhancement 

of technology efficiency as an intervention strategy for emission reduction pushes the 

annual efficiency change rate to the maximum of what has historically been measured in 

OECD regions between 1973 and 2007 by Millard‐Ball and Schipper [31]. Fuel switching 

towards electricity, hydrogen and biofuels goes significantly beyond historical rates of 

change and the scenarios would imply a clear break with historical trends.  

Model comparison studies allow a better understanding of future transport system 

behavior. At the same time, further model development is needed. The models show 

different pathways of technology transition, with different fuel types being deployed and 

different rates of deployment. Technology transition in the models is found to depend on 

travel cost, which is uncertain, reflected also in the range of vehicle capital cost projections 

in the models. Other important aspects such as fuel price and non-economic factors, (e.g. 

anxiety for new technologies) that are represented in various ways in the models but are not 

harmonized or explored in this study may also be important in projecting future shares of 

alternative-fueled vehicles. To improve transport modelling, further enhancement is 

required in the modelling of technology transition and behavioral considerations. Moreover 

an analysis of scenarios addressing the mitigation options that result from modal shift and 

from policies that impact behavior and infrastructure, especially in urban areas, could 

complement current results.   
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 TIAM-UCL1  IMAGE2 Imaclim-R3 MESSAGE4* POLES5 

System 
boundaries  

The fuel mix is determined 
endogenously. Indirect fuel 
use from manufacturing, 
upstream energy and 
emissions are calculated but 
not tied to transport. 

The model determines the fuel 
use, which is linked to the 
TIMER model, hence all 
emissions from fuels are 
considered. Embodied 
emissions of vehicles are 
included in the industry sector. 

As a CGE model all GHG-emitting and 
energy producing/ consuming sectors are 
included. This implies that indirect energy 
use and emissions from fuel production 
and vehicle manufacture are included, but 
in the energy transformation and industry 
sectors. 

All GHG-emitting and energy producing/ 
consuming sectors are included. This 
implies that indirect energy use and 
emissions from fuel production and 
vehicle manufacture are included, but the 
latter is not represented by a direct 
linkage. 

The transportation sector 
covers the transport of goods 
and passengers. Transport of 
energy and associated losses, 
which are accounted for in the 
own energy uses of the energy 
sector. 

Relationship 
drivers and 
demand 

GDP, population, and GDPP 
drive the transport demand, 
where energy service 
demand grows slower than 
the underlying driver. The 
demand is influenced 
through a linear relationship 
with the drivers. Each 
transport demand in each 
region has its own 
relationship driver and 
demand coupling factor. 

GDP, IVA (for freight) 
population, fuel price, non-
energy price, load factor, mode 
preferences, energy efficiency, 
mode speed drive service 
demand per mode, on the basis 
of Travel money budget (TMB) 
and Travel time budget (TTB) 
formulation. A fleet module 
determines fleet composition 
within each mode, affecting 
mode cost, energy efficiency 
and fuel type for each mode.  

The mobility demand and modal split result 
endogenously from households utility 
maximization under constraints of 
revenues and time spent in transport. Each 
mode is characterized by a price and a 
speed. The price of cars mobility depends 
on fuel prices and the cost of car 
ownership, while other modes by the 
intermediate consumption shares and 
prices within the general equilibrium 
framework. When infrastructure use 
reaches congestion, the marginal speed of 
the mode decreases, which limits its use. 

Fuel prices, vehicle costs, GDP, 
population, vehicle speeds, vehicle 
occupancy rates, passenger vehicles per 
capita, annual distance traveled per 
vehicle, etc. Travel money budget, travel 
time budget, income, travel prices and 
travel speed determine service demand 
for the different modes (mode choice). 
The optimization framework determines 
the fleet composition within each mode. 
Freight service demand is drived by 
population, GDP and price elasticity. 

Passengers:  
- Cars: income increase the 
number of cars per capita, fuel 
price affects the yearly mileage 
- Rail and buses: income 
increase the mobility, fuel price 
increase modal shift from cars 
to public transport 
Goods: GDP growth affects the 
mobility per mode 
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System 
boundaries  

Input of final energy in different 
forms is required together with 
investments and operation and 
maintenance payments into the 
distribution infrastructure as well 
as into the vehicle stock. Material 
needs and embodied energy are 
not considered. 

The full fuel cycle of each 
fuel is represented. This 
includes biomass from an 
agriculture and land use 
model. No other upstream 
inputs to the sector are 
considered (e.g. vehicle 
manufacturing, roads) 

Indirect energy use is 
treated in energy 
transformation sector 

Indirect energy use is not 
included. For example, 
emissions from car 
manufacturing process is 
classified into the industrial 
sector. 

All GHG-emitting and energy 
producing/ consuming sectors 
are represented explicitly in the 
model 

LDV and road freight are 
explicitly modeled, while other 
modes are embedded within a 
non-electric sector. Aspects 
such as infrastructure and the 
vehicle manufacturing are 
incorporated in the overall GDP 
and representation of final 
goods 

Relationship 
drivers and 
demand 

GDP growth, the autonomous 
efficiency improvements, the 
elasticities of substitution 
between capital and energy and 
between stationary and transport 
energy forms. Mobility from the 
different modes is input to a CES 
function, the output of which is 
combined with stationary energy 

GDP, population, and 
services prices, derived 
from vehicle speeds and 
vehicle levelized average 
operating costs. GDP sets 
the scale of the demand, 
and determines the wage 
rate, which determines the 
opportunity cost of each 

Transport 
intermediate inputs 
and final demand. 
Passenger transport is 
determined by GDP 
with elasticity. Freight 
transport is 
determined by all 
industrial sectors 

Scenarios on service 
demand of road 
transportations are 
developed for passenger 
cars and buses separately 
based on per-capita GDP 
and the historical trends. 
As for road freight 
transport  scenarios of 

The mobility demand and its 
modal split result endogenously 
from households utility 
maximization under constraints 
of income and firms under 
maximization revenues. Each 
mode is characterized by a 
price. The price of cars mobility 
depends on operational cost 

A linear Leontief function 
combines energy, O&M, vehicle 
capital and carbon costs to 
select the optimal mix of 
vehicle types. Vehicle 
ownership is a main driver 
which is set via a calibration 
based upon GDP growth. 
Exogenous efficiency 
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Table A.1: Drivers of energy demand in the transport sector of eleven IAMs. 

Table A.2: Technologies and final energy carriers 

 TIAM-UCL  IMAGE  Imaclim-R  MESSAGE  POLES 

Modes and 
vehicle types 

Passenger : 7 modes (two wheel, 
three wheel international aviation, 
domestic aviation, road auto, road 
bus, rail), Freight: 7 modes (light, 
commercial, medium, heavy truck, 
rail, domestic navigation, 
international navigation), and 
hundreds of technologies. 

Passenger: 7 modes (walk, 
bicycle, bus, train, car, high 
speed train and airplane), 6 
freight modes (national ship 
freight, international ship 
freight, medium truck, heavy 
truck, rail freight, air freight) . 
Tens of technologies per mode. 

Passenger: 4 modes (non 
motorized, personal vehicles, 
airplane, other) and 3 freight 
(trucks & freight rail, airplane, 
shipping). Technologies: ICE, 
efficient ICE, hybrid, plug-in 
hybrid and electric. 

5 passenger modes and 1 freight 
mode. Other modes are not 
explicitly modeled but their energy 
use is accounted for via an 
exogenous energy demand 
trajectory. Tens of technologies 
options per mode. 

Passengers: 7 modes (cars, motorbikes, 
bus, rail, air). Goods: 5 modes (heavy 
vehicles, light vehicles, rail, other (inland 
water), maritime). Technologies: ICE, 
plugin hybrid-electric, battery electric, 
fuel cell 

Final energy 
carriers 

Diesel, Gasoline, Ethanol, 
Electricity, LPG, Methanol, Natural 
Gas, Hydrogen, Fischer Tropsch 
biofuels.  

The transport model only 
considers the secondary energy 
carriers: Hydrogen, Gas, 
Electricity, Oil, Biofuel 

Liquid fuels from oil, Synthetic 
liquid fuels from other fossils 
Liquid fuels from biomass, 
Electricity 

All fuels from the MESSAGE energy 
systems model are considered in 
the transport module  

Oil products, Biofuels (energy crops and 
cellulosic feedstocks), Gas, Coal (for rail), 
Electricity and 
Hydrogen 

Energy 
consumption 
of vehicles. 

Share estimates split fuel 
consumption between road modes 
and rail modes. The model invests 
in technologies in order to satisfy 
the energy service demands in 
order to maximize consumer and 
producer surplus. Final energy 
consumption is endogenous to the 
model solution.  

Different vehicle types with 
different energy efficiency’s 
compete against each other 
(based on the multinomial 
logit), which allows for a 
change of energy efficiency of 
the mode.  

For personal vehicles : explicit 
technologies with a efficiency 
characteristic and leaning on the 
cost. For other modes: efficiency 
improvement triggered by fuel 
prices. 

Different vehicle types with 
different energy efficiencies 
compete against each other, which 
allows for an average change of 
energy efficiency of the mode over 
time. The techno-economic 
parameters for each technology are 
exogenously assumed.  

Unit consumption depends on: 
- price: long term elasticity to account for 
investment and short term to account for 
behaviour 
- income for behaviour, to control the 
spending on fuel for transportation 
(maximum “budgetary coefficient”) 

Determinants 
technology 
costs and 
shares 

Investment costs, O&M costs, fixed 
costs – are based on exogenous 
assumptions and change over time 
in response to an exogenous 
learning curve. Vehicle market 
share is outcome of the model 
solution. 

Net present costs based on 
literature, decreasing 
exogenously in time. We 
assumed that the technology 
costs is a global variable, as the 
technologies tend to be traded 
worldwide. Vehicle share is 
based on a multinomial logit. 

All technology characteristics are 
fixed in time, except costs that 
endogenously decrease with a 
learning rate. Vehicle market 
share is based on logit function. 

The techno-economic parameters 
are exogenously assumed and 
change over time.  There is also 
regional differentiation for certain 
technologies and parameter 
assumptions. Market shares are 
based on least cost optimization. 

Road vehicles: Efficiency, lifetime, 
investment cost, fixed and variable O&M. 
These parameters change overtime 
exogenously. Vehicle competition based 
total user cost and infrastructure 
possible development. 

in a CES function to generate a 
generalized energy good, which is 
combined with labor and capital 
in the main production function 
for GDP.  

travel mode. In this way, 
increases in GDP will 
increase the per-capita 
demand for travel, and shift 
this demand towards the 
fastest modes. 

inputs. They are 
formulated as 
multiplying input 
coefficient. 

cargo trucks, overall cargo 
service per-capita is 
estimated by the GDP size, 
under assumption of modal 
shifts.  

and the purchased cost. The 
price of other modes is 
determined in the general 
equilibrium framework by the 
intermediate consumption 
shares and prices.  

improvements are 
implemented within the model. 



27 

 

Distribution 
between 
transport 
modes 

Distribution is assumed 
exogenously, but the split between 
modes may slightly change due to 
responses to own price elasticities. 

Time and costs are considered. 
Cost are weighted relative to 
time with a time-weight factor. 
The time-weight factor is 
determined by the travel 
money and travel time budget.  

Households utility maximization 
under both constraints of 
revenues and time. 

Time and costs are considered. 
Costs are weighted relative to time 
with a time-weight factor. The 
time-weight factor is determined 
by the travel money and travel 
time budget.  

The different modes are mostly 
disconnected, limited by: differentiated 
elasticities to fuel prices and  saturation 
effects ( e.g. max. number of cars per 
capita, maximum air related mobility) 

 REMIND  GCAM DNE21+  GEME3 AIM-CGE  WITCH  

Modes and 
vehicle types 

Passenger: 4 modes, Freight: 
1 mode. For passenger 
transport: LDV, Aviation, Bus 
and Electric Trains. One 
generic freight transport. 

Passenger: 10 modes. Freight: 4 
modes. Off-road vehicles, mining, or 
agriculture are not part of the 
transportation sector, except for  China 
and India. ICE, electric, hybrid, fuel cell 
and compressed natural gas for bus/ 
passenger. For other modes two or one 
technology options. 

Road transportation : 
5 modes. The other 
subsectors are 
generated in a top-
down manner. 
Technologies: ICEs, 
ICE efficienct, HEV, 
PHEV, electric, fuel-
cell.  

Passenger: 5 modes (Passenger 
Cars, LDV/Bus, Aviation, rail and 
inland navigation), Freight: 3 
modes (LDV/heavy trucks, rail, 
inland navigation). Technologies: 
pure conventional, hybrid, plugin 
hybrid-electric, battery electric, 
biofuels  

5 passenger modes (bus, 
train, car (incl 2- and 3-
wheelers), train, airplane) 
Freight: 6 modes 
(national ship freight, 
international ship freight, 
medium truck, heavy 
truck, rail freight, air 
freight). Aggregated 
technology. 

2 modes. Road 
passenger and freight, 
both featuring four 
vehicle types: ICE, 
hybrid, plug-in hybrid 
and battery electric.  

Final energy 
carriers 

Liquids (Coal, Gas, Oil or 
Biomass (only second-
generation with CCS for Coal 
and Biomass. Electricity (only 
LDV).Hydrogen (only LDV) 
(Coal, Gas or Biomass, all 
combined with CCS). 

Liquid fuels (includes fuels derived 
from oil, coal, gas, and biomass), 
Electricity Natural gas (mostly natural 
gas; also includes biogas and coal 
gas),Hydrogen (from many fuels), Coal 
(for rail in China) 

Gasoline, Diesel, 
Bioethanol and 
Biodiesel, CNG, 
Electricity,  Hydrogen 
from coal, gas 
biomass and 
electricity Plus CTL 
(coal to liquid) and 
CTG (coal to gas).  

Road: Oil, Electricity, Gas, 
Biogasoline and Biodiesel 
(traditional and second 
generation). Rail: Coal, Oil, 
Biodiesel and electricity. 
Airplane: Oil, Biodiesel. Ship: Oil, 
biodiesel. 

Road: Oil, electricity, and 
biofuel (bus can use gas), 
Railway: electricity and 
coal, Ship: oil, biofuel and 
coal, Airplane; oil and 
biofuel. 

Liquids can come from 
Oil or Biomass 
(traditional or second-
generation). Electricity 
can come from coal 
(possibly with CCS), gas, 
oil, biomass (possibly 
with CCS), wind, PV, 
CSP, hydro or nuclear 

Energy 
consumption 
of vehicles. 

The general efficiency of one 
transport mode improves 
exogenously over time in the 
CES function. 

The energy quantity is derived from the 
average vehicle intensity and the load 
factor. The energy intensity of each 
technology is assumed to change over 
time exogenously. Endogenous 
changes of energy intensity are due to 
(a) switching from ICE to hybrid 
vehicles, (b) switching from smaller to 
larger vehicles, (c) modal shifting, or (d) 
switching to fuels with lower end-use 
energy intensity. 

Energy consumption 
is determined based 
on the exogenous 
scenarios on service 
demand of road 
transportations in 
combination with 
technology (fuel 
efficiency of vehicles, 
costs and implicit 
discount rate) choice.  

Different passenger cars types 
with different energy efficiency’s 
compete against each other 
based on Weibull. 
The efficiency of other transport 
modes improves exogenously 
over time in the CES function 

Multiplying coefficient. 
Fuel efficiency 
improvement is 
considered. 

The efficiency of LDV 
and road freight 
transport modes 
improves exogenously 
over time based on 
selected efficiency 
improvement targets or 
selected forecasts. 
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Determinants 
technology 
costs and 
shares 

Efficiency, lifetime, 
investment cost, fixed O&M. 
Investment cost for battery 
electric and fuel cell vehicles 
decrease endogenously 
following a global learning 
rate towards a given floor 
cost. The distribution of LDV 
vehicles follow cost 
optimization with different 
non-linear constraints 

Capital costs are amortized over an 
exogenous lifetime, assuming a 10% 
discount rate. Non-fuel operating costs 
include insurance, registration, taxes 
and fees, and standard O&M expenses. 
These can  decrease exogenously for 
immature technologies such as electric 
cars or hybrid vehicles. Vehicle market 
share is based on logit function. 

Fuel efficiency of 
vehicles and costs are 
assumed to be 
improved 
exogenously. Lifetime 
does not change over 
time. Market shares 
are based on least 
cost optimization 

Capital costs are amortized over 
an exogenous lifetime, assuming 
a 12.5% discount rate. Non-fuel 
operating costs include 
insurance, registration, taxes and 
fees, and standard O&M 
expenses.  
Capital cost decrease 
endogenously for immature 
technologies such as electric cars 
or plugin hybrid vehicles 
assuming a global learning rate 
towards a given floor cost. 
Vehicle market share is based on 
Weibull function. 

Not explicitly determined. Efficiency, lifetime, 
investment cost, fixed 
O&M. 
Investment cost for 
battery electric vehicles 
decreases following a 
global learning rate as a 
consequence of 
endogenously modeled 
investments in R&D. 
The distribution of LDV 
and road freight 
vehicles follows cost 
optimization with 
different non-linear 
constraints. 

Distribution 
between 
transport 
modes 

The distribution between LDV 
and other modes is 
determined via the CES 
production function, driven 
by the elasticity of 
substitution (1.5) and the 
evolution of the efficiency 
parameters.  

The modes compete using a logit share 
formulation, where the costs includes 
both the vehicle cost and the time 
value cost. The time value cost is 
derived as the wage rate divided by the 
average transit speed, and modified by 
an exogenous time-value multiplier 
that is generally close to 1. 

Travel demand is 
exogenously given for 
each mode. Modal 
shift is not 
endogenously 
evaluated.   

The different type of passenger 
cars compete using a Weibull 
share formulation, where the 
costs includes both operational 
cost and purchase cost. The 
distribution between LDV and 
other modes is determined via 
the CES production function, 
driven by relative prices and the 
evolution of the efficiency 
parameters. 

 The distribution 
between modes is fixed 
and determined via 
separate demand 
calculations. 

1)Anandarajah, Pye [24], 2)Girod, van Vuuren [16], 3)Waisman, Guivarch [21],4)Riahi, Dentener [22] , 5)Girod, van Vuuren [42],6)Luderer, Bosetti [23],7)Kyle and Kim 
[19],8)Sano, Wada [18]  9)Fujimori, Masui [17], 10)Karkatsoulis, Kouvaritakis [20],11)Bosetti and Longden [25],Longden [26], 1:11)EU-FP7-ADVANCE [27] 

 *The MESSAGE transport module used in this study is a simpler version than used in other papers of the special issue (e.g.. McCollum et al., 2016). Specifically, this version 
is MESSAGE-Transport V.5; yet, for the purposes of this paper, the model did not make any explicit assumptions about heterogeneous behavioral features among 
consumers 

 
 


