
Netherlands Environmental Assessment Agency, June 2010

IMAGE Programming
Guidelines

IMAGE Programming Guidelines

This document describes the requirements and guidelines

for the software of the IMAGE system. The motivation for

this report was a substantial restructuring of the source

code for IMAGE version 2.5. The requirements and guide-

lines relate to design considerations as well as to aspects of

maintainability and portability. The design considerations

determine guidelines about subjects, such as program struc-

ture, model hierarchy, the use of data modules, and the error

message system. Maintainability and portability aspects

determine the guidelines on, for example, the Fortran 90

standard, naming conventions, code lay-out, and internal

documentation.

Background Studies

IMAGE Programming Guidelines
Programming requirements
and guidelines

PBL (E. Stehfest, L. de Waal),
VORtech

IMAGE Programming Guidelines
© Netherlands Environmental Assessment Agency (PBL), June 2010
PBL publication number 500110007

Corresponding Author: Liesbeth.deWaal@pbl.nl; IMAGE-info@pbl.nl

Parts of this publication may be reproduced, providing the source is stated, in the form:
Netherlands Environmental Assessment Agency: IMAGE Programming Guidelines.

This publication can be downloaded from our website: www.pbl.nl/en. A hard copy may be
ordered from: reports@pbl.nl, citing the PBL publication number.

The Netherlands Environmental Assessment Agency (PBL) is the national institute for
strategic policy analysis in the field of environment, nature and spatial planning. We contribute
to improving the quality of political and administrative decision-making by conducting outlook
studies, analyses and evaluations in which an integrated approach is considered paramount.
Policy relevance is the prime concern in all our studies. We conduct solicited and unsolicited
research that is both independent and always scientifically sound.

Office Bilthoven
PO Box 303
3720 AH Bilthoven
The Netherlands
Telephone: +31 (0) 30 274 274 5
Fax: +31 (0) 30 274 44 79

Office The Hague
PO Box 30314
2500 GH The Hague
The Netherlands
Telephone: +31 (0) 70 328 8700
Fax: +31 (0) 70 328 8799

E: info@pbl.nl
www.pbl.nl/en

Rapport in het kort 5

 IMAGE Programming Standard
Dit rapport beschrijft de eisen en richtlijnen die gesteld
worden aan de programmatuur van het IMAGE model. De
aanleiding was onder andere een fundamentele herstructure-
ring van de programmatuur, voor IMAGE versie 2.5. De in dit
rapport gestelde eisen en richtlijnen hebben betrekking op
zowel ontwerpoverwegingen als op onderhoud- en over-
draagbaarheidaspecten. De ontwerpoverwegingen geven
richtlijnen over onderwerpen zoals programmastructuur,
modelhiërarchie, het gebruik van data modules en het fout-
meldingensysteem. Onderhoud- en overdraagbaarheidaspec-
ten hebben betrekking op richtlijnen over bijvoorbeeld het
Fortran 90 standaard, naamconventies, code lay-out, interne
documentatie.

Trefwoorden:
IMAGE, programmeerstandaard, eisen, richtlijnen,
onderhoud.

Rapport in het kort

IMAGE Programming Guidelines6

Contents 7

Contents

�� Rapport in het kort 5

�� Summary 9

�� 1 Introduction 11
1.1 The IMAGE framework and the IMAGE program 11
1.2 Aim of the report 11
1.3 Contents of this report 11
1.4 Other relevant documents 12

�� 2 Program structure 13
2.1 Overview 13
2.2 Models within IMAGE 13
2.3 Guidelines for models 14
2.4 Model data module 15
2.5 Standard model subroutines 15
2.6 Other model subroutines 16
2.7 Libraries 16

�� 3 Files used by the IMAGE program 17
3.1 Introduction 17
3.2 Regional files 17
3.3 Grid files 17
3.4 Const files 18
3.5 Restart files 18

�� 4 The restart functionality 19
4.1 Introduction 19
4.2 Restart aspects when making changes to an existing IMAGE model 19
4.3 Restart aspects when adding a new model to IMAGE 19
4.4 The model init routine 20
4.5 The model step routine 20
4.6 Standard model subroutines for restart 20
4.7 Control file imexport.dat 21

�� 5 Calibration functionality 23

�� 6 Writing output messages 25

�� 7 Code aspects 27
7.1 Terminology 27
7.2 Naming conventions 27
7.3 Coding guidelines 27
7.4 Code lay-out 28

�� 8 Version Control 29

�� 9 Checklist IMAGE Programming Standard 31

IMAGE Programming Guidelines8

�� Appendix A Restart functionality 32

�� Appendix B Grid file technical details 33

�� Appendix C Regional Files 34

�� Appendix D Real arrays and grid files 35

�� Appendix E Software 36

�� Appendix F Code lay-out examples 37

Summary 9

This document describes the requirements and guidelines for
the software of the IMAGE program. The motivation for this
report was a substantial restructuring of the source code for
IMAGE version 2.5. The requirements and guidelines relate to
design considerations as well as to aspects of maintainability
and portability. The design considerations determine
guidelines about subjects, such as program structure, model
hierarchy, the use of data modules, and the error message
system. Maintainability and portability aspects determine the
guidelines on, for example, the Fortran 90 standard, naming
conventions, code lay-out, and internal documentation.

Keywords:
IMAGE; programming; guidelines; requirements; maintenance

Summary

IMAGE Programming Guidelines10

Introduction 11

1.1 The IMAGE framework and the IMAGE program

IMAGE is an ecological-environmental modelling framework
that simulates the environmental consequences of human
activities worldwide. It represents interactions between
society, the biosphere and the climate system to assess
sustainability issues, such as climate change, biodiversity and
human well-being. The objective of the IMAGE framework is
to explore the long-term dynamics of global change as the
result of interacting demographic, technological, economic,
social, cultural and political factors.

A central part of the IMAGE framework – and subject of this
report – is the IMAGE program (executable) that contains all
land- and climate-related models.

One of the reasons for this report was the substantial
restructuring of the source code for IMAGE version 2.5.
Therefore, these programming guidelines are applicable for
IMAGE version 2.5 onwards, reflect the situation in 2009, and
will be updated as required.

1.2 Aim of the report

The IMAGE program is very complex. First of all, this is due to
the large number of interacting models within the program.
Secondly, many of these models are themselves complex by
nature. Thirdly, IMAGE works on very large data-structures
(arrays) which easily leads to excessive memory use if the
programming is not done efficiently. Finally, the code is under
constant development to include new insights, which causes
program-fragments of different development stages to
coexist within the program.

To keep the IMAGE program code manageable, a software
structure has been established and coding guidelines have
been developed. This report describes the software structure
and the coding guidelines.

Note that the rules and guidelines in this report are not
meant to hinder developers, but rather to ensure the overall
integrity of the IMAGE program. If not carefully observed,
the IMAGE code may become unmanageable, over time.
Therefore, IMAGE developers are kindly but strongly
requested to please comply with the guidelines. If necessary,
guidelines can, of course, be changed after thorough
consideration.

1.3 Contents of this report

This section provides an outline, to give the reader a quick
impression of the report’s contents. This report contains six
chapters.

Chapter 2, Program structure, discusses the various aspects
of the software structure and the underlying reasons for it.
This chapter describes how IMAGE, as a whole, is assembled
from individual models. Each model is programmed in
such a way that it can, in principle, be replaced by another
implementation without affecting the other parts of IMAGE.
This modularity is very important for keeping the large
number of models manageable.

Chapter 3,Files used by the IMAGE program, discusses the main
types of files that are used by the IMAGE program.

Chapter 4, The restart , discusses the requirements of the
program code that are imposed by the restart mechanism.
The restart mechanism allows for a simulation to start off
with data produced by a previous simulation. The restart
functionality has strong implications for the structure of the
code, and must therefore be particularly well understood by
the programr.

Chapter 5, Calibration functionality, discusses the
implementation of the calibration process within the IMAGE
code.

Chapter 6, Writing output messages, discusses the routines that
should be followed to produce error messages and warnings.

Chapter 7, Code aspects, discusses the guidelines that keep the
IMAGE code portable, readable and consistent. It treats the
following subjects:

Naming conventions (Section 7.2)
In this section, guidelines are given, for example, on naming
files, subroutines, and modules.

Coding guidelines (Section 7.3)
This section gives rules for the source code of the system.

Introduction 1

IMAGE Programming Guidelines12

1.4 Other relevant documents

In this report, we also refer to the following reports and
documents, in which additional information can be found:

 � IMAGE User Manual (PBL, 2010)
 � Description of the calibration functionality

(IMAGEcalibration.doc)
 � Description of the IMAGE version control (IMAGE_

versionControl.doc)

Links to these documents can be found at the IMAGE project
directory, under \Image_Intro\RelevantLinks, or they can be
obtained, if relevant, from image-info@pbl.nl.

The IMAGE project directory is ‘\project\M481508_
IMAGEaanpassingEnBeheer’, at the moment.

Program structure 13

2.1 Overview

The IMAGE program consists of:
1. models, such as AOS, TES, and ATMOCHEM., each

consisting of a number of subroutines, and
2. libraries which contain general subroutines used

throughout the program, for example, to read and write
files.

These models require elaborate explanations and are the
topic of Sections 2.2 through 2.5. Libraries are discussed in
Section 2.7.

2.2 Models within IMAGE

2.2.1 Introduction
The IMAGE program consists of a hierarchy of models. The
two main models are the Atmosphere Ocean System (AOS)
and the Terrestrial Environment System (TES). Both consist
of underlying models. For example, AOS consists of models,
such as ATMOCHEM, CLIMATE, and OCEAN, which may, in
turn, consist of yet other models.

The models are organised in a hierarchy to make the code
easily accessible: at the main program level, only the two
main systems AOS and TES are visible. Someone interested
in the AOS model can zoom-in on that model without being
concerned with the internal structure of TES. This helps a
programmer to quickly find his/her way around the code.

Also, the hierarchical structure (with additional requirements
on how models are programmed, see the next section) makes
it possible to replace the entire AOS model with an entirely
different implementation without affecting the rest of the
IMAGE program. Within AOS, the same arguments hold for
the models from which AOS is composed, and subsequently
also hold for all models down the line, up to the deepest
models within the IMAGE program.

The interaction between same-level models (e.g. AOS
and TES) takes place through variables that are passed as
arguments to the calls to AOS routines and TES routines.
The two models do not use each other’s variables directly.
Hence, the variables in the calls to the AOS and TES routines
represent the complete interaction between the two models.

This ensures that one of the models can be replaced by a
different model implementation which provides the same
variables. Also, it makes the interactions between models
explicitly visible, which helps to understand the model as a
whole (In fact, there is one extra line of interaction between
models on the same level in the hierarchy, which is through
the grid files; as will be discussed further on in this report).

Each model, at each level in the hierarchy, consists of the
same elements: for example, each has an initialisation routine
and a routine to perform a single time step. Understanding
this structure is important for several reasons. First of all, a
programmer familiar with this structure can quickly find his/
her way around the code. Secondly (but not less important),
the structure is essential for the restart mechanism, which
will not work if the structure is compromised. Finally, the
structure guarantees that the interaction between models
within the IMAGE program is always through subroutine
arguments only, which in turn guarantees that each model
can be replaced by another or new implementation and helps
to keep the interactions visible and understandable.

2.2.2 Outline of the structure of a model
A structure of a model is schematically shown in the Figure
2.1:

On the lower left side is the AOS model. It consists of two
parts: 1) a number of subroutines and 2) a collection of data,
which is implemented as a Fortran MODULE.

The set of subroutines consists of standard subroutines which
every model has to have (such as an initialisation routine and
a time step routine) and some extra subroutines that are
specific to the AOS model. The latter category consists of
subroutines that are used to keep the standard subroutines
short and clear: these extra subroutines are always called
from the standard subroutines.

The data associated with the IMAGE model also consists of
two parts: a collection of (physical) constants and a collection
of model state variables. The constants are set once at the
start of the program and are never changed. The model
state variables represent the state of the AOS model, which
obviously varies with (simulation) time.

On the right side of the figure above are the child models of
AOS (e.g. CLIMATE, OCEAN, ATMOCHEM). Each of these child
models has a structure that is identical to that of AOS.

Program structure 2

IMAGE Programming Guidelines14

There are some very important rules about passing data from
a model to its child models:

 � Subroutines of a certain model may directly use the
physical constants in the parent model (so climate_init can
directly use physical constants from the AOS data module).

 � Subroutines of a certain model may directly use the state
variables of their own model.

 � Subroutines from a model may not directly use the model
state variables from the parent model and, reversely, the
parent model may not directly use model state variables
from one of its child models. If a model variable from
AOS is needed in CLIMATE, then it must be passed as an
argument in the call to the climate routine (var5 in the
figure above). Technically, however, it is possible to make
use of state variables in the forbidden way, because the
child model will often include the _DataDecl module from
the parent model to access the physical parameters. In
such a case, it could also access the state variables of the
parent. To avoid this, the keyword ONLY must be used
after the USE statement of the parents _DataDecl module,
and there may only be physical constants after the ONLY
statement. When accepting a new piece of code as part of
the operational version, this should always be checked.

 � Variables that are input in the subroutines of AOS can
obviously also be used in the call to subroutines of child
models that are called from that AOS (‘passing through’),
such as var1 in the figure above.

The rationale behind this is that it forces the programmer to
explicitly show the interactions between a model and its child
models (and from one child model through the parent model
to another child model). This, in turn, guarantees that a model
can always be replaced by another implementation. Also, it
allows for easier understanding of the interaction between
the models and, thus, for a better understanding of the model
as a whole.

Actually, it would be better if access to the physical constants
of the parent model was also not allowed, but this would lead
to excessive subroutine argument lists.

The image.fip file, shown at the top of the figure above,
contains constants (Fortran: PARAMETER) that are used
throughout the program, such as the number of regions and
the number of cells. The image.fip file can be included at any
point in the code and the constants can be used freely. As
with the physical constants, this breach of strict modularity is
allowed to avoid excessively long argument lists.

The next section summarises the rules for defining new
models within the IMAGE program hierarchy and the rules for
access to data.

2.3 Guidelines for models

2.3.1 Where to place a new model
When a new model is added to the IMAGE program, the
following rules are applicable, to preserve the structure,
efficiency, understandability, and maintainability of the
program:

 � Hierarchy: A new model must always be placed at a logical
location within the hierarchy, in the same way as existing
similar models.

 � Ownership: A new model must belong either to one, ,and
only one other model, or to the main program. In other
words, there must be aparent-child relationship.

 � Input/output: The model should be placed under a parent
model in which a large part of the input and output
variables of the new model are already present. The
number of extra I/O variables with higher level models
must be minimal.

 

Figuur 2.1

ATMOCHEM model

OCEAN model

AOS Subroutines:
aos_init(var1, var2)
 call Climate_init(var1,var5)
aos_step(time,…,var3, var4)

AOS data
Physical constants

AOS model variables

AOS model

CLIMATE model

CLIMATE subroutines
Climate_init(varA, varB)
Climate_step(…)

(time,…,var3, var4)
... CLIMATE data

image.fip

Child models

Program structure 15

 � Coherence: model subroutines may only be called by other
subroutines within that model or by subroutines of the
parent model.

 � Source file directories and Visual Fortran: The source file
directory structure and the Visual Fortran project file
structure must match the model structure.

2.3.2 What defines a new model
Models must have the following characteristics.

 � Significance: A model must be meaningful. That is, it must
represent a model as understood by a modeller.

 � Data: The number of variables that is exchanged across
model boundaries must be as small as possible, to support
the clarity and maintainability of the program.

 � Size: The size of a model must be limited. If a model is
large, the possibility of dividing it into smaller models
should be examined, to improve the structure and
understandability of the program.

2.3.3 Interaction between models
The following rules apply to data flow.

 � Data exchange: All data exchanged between models is either
passed through subroutine arguments or by means of grid
files, but not through common blocks or data modules. For
more information about grid files, see Chapter 3.

 � Model state variables: Model state variables (the variables
that are defined in the _DataDecl module) may only be
accessed by the subroutines of the model itself.

 � Physical constants: Constants of a model module may be
accessed by subroutines of this and lower level models.

These rules are aimed at keeping data as local as possible, so
that adjustments made to a model have a limited impact.

2.4 Model data module

Every model has a data module:

 Module <model name>_DataDecl
This Fortran module contains the model variables that
must retain their value after a model subroutine finishes. In
principle, the module does not contain subroutines.
The module contains two types of data: physical constants
and state variables. The physical constants are in fact variables
that are kept unchanged during the simulation run. They are
dynamically initialised in subroutine <model name>_DataInit
by reading the values from a .const file. See also Chapter 3 for
more information on .const files.

The modelstate variables are statically initialised by the module
itself and are modified by the model subroutines.

2.5 Standard model subroutines

Every model has a number of standard subroutines; these are
described in the following subsections.

 <model name>_DataInit
This subroutine initialises the model’s physical constants.
These are initialised by reading the appropriate values from

the <model name>.const input file, by means of general
subroutine getini. For more information on the <model name>.
const file, see Chapter 3.

Example: see aos_DataInit.f90

<model name>_init
This subroutine calls <model name>_DataInit, and the init
routines from the child models (for an explanation about child
models, see Section 2.2.2). Furthermore, it sets the model
state variables to values matching the start of the simulation
run.

Note: The init routines of the highest level models (AOS and
TES) are called from the main program unit (image.f).

Example: see ocean_init.f90

<model name>_step
This subroutine computes one time step for the model. This
routine calls the step routine of each child model, if any (see
Section 2.2.2 for an explanation about child models). It also
performs the calculations for the model itself.

Note: For a description of the tasks that the step-routine has
to perform for the restart functionality, see Chapter 4.

Note: The step subroutine of every highest level model (AOS
and TES) are called from the main program unit (image.f).

Example: see climate_step.f90

<model name>_DataExport
This subroutine exports the model state variables to a Data
restart file. For a further description of this routine, see
Chapter 4.

Example: see aos_DataExport.f90

<model name>_DataImport
This subroutine imports the model state variables from a
Data restart file. For a further description of this routine, see
Chapter 4.

Example: see aos_DataImport.f90

<model name>_CallvarsExport
This subroutine exports the value of subroutine arguments to
a Callvars restart file. For a further description of this routine,
see Chapter 4.

Example: see aos_CallvarsExport.f90

<model name>_CallvarsImport
This subroutine imports the values of subroutine arguments
from a Callvars restart file. For a further description of this
routine, see Chapter 4.

Example: see aos_CallvarsImport.f90

IMAGE Programming Guidelines16

Copyfunf_<model name>
This subroutine copies restart files of child models to the
working directory. For a further description of this routine,
see Chapter 4.

Example: see copyfunf_ldm.f90

2.6 Other model subroutines

Next to the standard model subroutines described in the
previous section, a model may also contain additional
subroutines. They are mostly called from _init or _step,
in order to prevent that _init and _step become too long.
Additional subroutines in a model can make use of all model
state variables declared in its _DataDecl. The additional
subroutines may also call each other. In fact, the programmer
has much freedom in how to use the additional subroutines,
as long as the initialisation functionality remains in (or under)
the _init routine, the time stepping functionality remains in
(or under) the _step routine and state variables remain in the
_DataDecl module.

If the content of a separate subroutine is a large and clearly
defined functionality, it should be considered to cast as a
new model. In this case, the separate subroutine will often be
the _step routine of the new child model and an appropriate
_DataDecl module (probably containing some of the model
state variables that were previously in the parent model) and
accompanying _init routine must be created.

To determine whether a separate subroutine is actually a
child model, the _DataDecl module that would be created
for the child model can be analyzed. If there is nothing to be
put in the _DataDecl module, then the separate subroutine
is apparently a stateless routine and does not qualify as a
model. If, however, the _DataDecl module can be put to
good use, then this is a clear indication that the separate
subroutine is part of a child model. See also Section 2.3.2 for
characteristics that every model should have.

2.7 Libraries

The program currently has one library, called gentools.
It contains a large number of supporting subroutines,
often embedded in modules. These subroutines comprise
general functionality that is not specific for any model. New
subroutines for this library should contain the same kind of
functionality.

At this moment, it is possible to include (‘use <module name>’)
the following modules from library GENTOOLS:

name of module description

calibration functionality to run IMAGE in calibration
mode, see Chapter 5

funf_mod functionality to read and write
unformatted grid files, see Section 3.3

getinifile functionality to read const files, see
Section 3.4

gettables functionality to read tables from dat-files

imexport functionality to import or export data to
restart files, see Section 3.5

lintpol_mod linear interpolation functionality

message contains the message system, see
Chapter 6

mfmake_mod provides an interface to mfmake routines,
see Section 3.2

Files used by the IMAGE program 17

3.1 Introduction

IMAGE uses the following main types of files (file formats are
explained in the appendix):

 � Regional input/output files, providing values of a variable for
each region, for a number of years.

 � Grid files, which mainly provide a mechanism to pass
variables that are defined on the cell level from one
model to another, without the need to keep all these
variables simultaneously in memory (which requires a large
computer memory). Additionally, grid files are also used
for input and output of gridded information.

 � Const files, which provide the values of physical constants
used by models. There is one const file for each model.

 � Restart files, which store the state of all state variables of
Image at a certain moment in the simulation, so that the
simulation can be resumed from that moment on.

This chapter presents a brief discussion on each of these files.

3.2 Regional files

A regional file stores a regional input or output variable.

3.2.1 Writing regional output files
A regional output file is created using the subroutine mfmake.
This subroutine creates the file and writes the first lines
(the header of the file). This is typically done in the <model
name>_init routine of a model, which makes all necessary
preparations for the first time step of the model.

Adding lines to a regional output file is done by calling the
subroutine mfappend as illustrated by the following code
fragment:

 call mfappend(88,’LOCCROPPR’,time)
 do c=1,NFC
 do l=1,NLATIT
 write(88,9005)(val(r,c,l),r=1,NRT)
 enddo
 enddo
 call mfclose(88,time)
9005 format(<NRT>(1X,F6.4))

This fragment adds a section to the file LOCCROPPR.OUT. The
section starts with the value of time. In this case, the section
has NFC times NLATIT lines of NRT values each.

The mfclose operation writes the end-of-file marker (a ‘]’)
at the end of the file, if time is the last time step of the
simulation; otherwise it does nothing but close the file.

3.2.2 Reading regional input files
Regional input files are read as illustrated by the following
code fragment:

 call mfopen(88,’INEMN2O.OUT’)
 ttaben2oin = 0
1010 continue
 call ryear(88,year,endflag)
 if (endflag .eq. 0)then
 ttaben2oin = ttaben2oin+1
 taben2oin(1,ttaben2oin) = year
 read(88,*)(taben2oin(1+r,ttaben2oin),r=1,NR)
 goto 1010
 endif
 close(88)

The mfopen subroutine opens the INEMN2O.OUT file for
reading and scans over the first lines with header information.
The call to ryear determines whether there is data for at least
one more year to be read and sets endflag accordingly. If so
(i.e. endflag.eq.0), then the values are read. After the data
from the last year has been read, the file is closed with a
normal close operation.

3.3 Grid files

Within the IMAGE framework, grid files are mainly used to
pass array contents directly from one program to another or
from one subroutine to another. Grid files are unformatted
Fortran direct access files. Every grid file contains one array
for a single moment in the simulation; the name of the array
appears in the filename, for example. greg.unf1 (for array
greg).

The advantage of these files is that data can be exchanged
while keeping memory space within acceptable limits. Grid

Files used by the
IMAGE program

3

IMAGE Programming Guidelines18

files are, in general, not supposed to last after the simulation
has been completed.

There are a few exceptions:
 � Several grid files are provided as input for the simulation:

 – <project>\data\unf (files coming from several
sources)

 – <project>\data\gcm (global climate model data)
 – <project>\start (terrestrial vegetation data)

 � Several grid files contain output of the simulation, in
particular the files in

 – <project>\<scenario>\map (scenario output files)
 � There are also grid files among the restart files. These

are actually copies of grid files that are used during the
simulation to pass an array from one model to another.

Grid files are only accessed by the subroutines readfunf and
writefunf from module funf_mod in library gentools section file.

Technical details about grid files can be found in Appendix B.

3.4 Const files

Every model has an associated .const file containing the
values of the physical constants used by the model. Having
constants initialised from a control file, instead of hard-coded
constants, makes it possible to experiment with sensitivities.
Furthermore, in case of maintenance, physical constants only
have to be adapted at one location.

The values in const files are only accessed using the general
subroutine getini.

3.5 Restart files

The restart files are placed in folders; one folder per model.
The folders’ structure matches the model hierarchy. The
restart grid files are located in

<project>\<scenario>\work\state.

Restart files come in three different flavours:
 � Callvars files, which contain the values of the arguments

in the call to the step routine of the model for a particular
time step.

 � Data files, which contain the values of the model state
variables at a particular moment during the simulation.

 � Grid files, which are copies of the grid files produced at a
particular moment during the simulation by the model to
pass large arrays (with the size of the number of cells) to
other models.

The Data and Callvars files can be either textual or binary.
The grid restart files are always binary (unformatted). For a
description of the regular textual file format, see the IMAGE
User Manual, Appendix A File Structures, Section Restart
Files.

There is a Data restart file and a Callvars restart file for every
model.

For more information about the restart functionality, see
Chapter 4.

The restart functionality 19

4.1 Introduction

An important feature of the IMAGE system is the restart
functionality. The restart functionality comprises three main
functions:
1. Restart: the possibility to start an IMAGE run at an arbitrary

year for which the state of all the models has been
exported in a previous IMAGE run.

2. Nocompute: the possibility to ignore the functionality of
certain selected models in a simulation run.

3. Readfromfile: the possibility to let certain selected models,
that have the nocompute option set, read their results from
files produced by a previous run.

The action of producing files for use in later runs is called
‘exporting’; a run ‘exports’ files; the created files are called
‘export files’. The action of reading export files is called
‘importing’; a run can ‘import’ files.

The user aspects of the restart functionality are described
in the IMAGE User Manual. There are two situations in
which a programmer must pay attention to keep the restart
functionality working:
1. when making changes to an existing model
2. when adding a new model to the IMAGE program

The next two sections, in general terms, describe what
a programmer must do to keep the restart functionality
working in either of these situations. The routines that are
mentioned in these sections are described in more detail in
Sections 4.4 to 4.7. Background information about the various
aspects and functions of the restart functionality is given in
Appendix A.

IMPORTANT: The subroutine descriptions in this section must
be considered as basic descriptions. In practice, variations
and deviations in details are possible. See existing models as
examples, for instance, AOS, TES, and TVM.

4.2 Restart aspects when making changes
to an existing IMAGE model

For a restart, the state of the model at the moment of
restarting must be restored. The state of the model is
determined by:
1. The arguments in the call to the <model name>_

step-routine.

These values are read and written by means of rou-
tines <model name>_CallvarsImport and <model
name>_CallvarsExport. When the arguments in the call to
the step routine are changed, these two routines must be
changed accordingly. The programmer must pay attention
to the import and export routines always corresponding
with each other.

2. The module variables that are declared in the <model
name>_DataDecl (see Section 2.4).
These values are read and written by means of routines
<model namel>_DataImport and <model name>_DataExport.
When changes are made to the <model namel>_DataDecl,
these two routines must be changed as well. Again, the
programmer must take care that the import and export
routines always correspond to each other.

3. The variables stored in grid files (see Section 3.3).
Grid files are used to pass array contents directly from one
subroutine to another. Grid files are unformatted Fortran
direct-acces files and are only accessed by subroutines
readfunf and writefunf from the module funf_mod. If these
routines are used without optional arguments, the grid
data is read from or written to the working directory.
When a run is restarted, the information stored in the
working directory is no longer available. If a model needs
data from a grid file written in a previous time step, the
programmer must take care that this information is
written to the restart directory, as well.
To do this, the optional arguments exportYear and sysInfoNr
are available. If these arguments are included in the call to
writefunf, the grid file is written to the working directory as
usual, and also to the restart directory, with a time label
attached to the grid file. The data can be restored from
the restart directory with readfunf in combination with the
parameters exportYear and sysInfoNr.

4.3 Restart aspects when adding a new model to IMAGE

When a new model is added to the IMAGE program, the
programmer must make sure that:
1. The routines <model name>_init and <modenamel>_step

of the new model contain certain code fragments, see
Sections 4.4 and 4.5.

2. The state of the model, that is, the calling arguments,
the model state variables declared in the <model
name>_DataDecl and (if used) the unformatted grid files,
are imported and exported by means of the five standard
subroutines described in Section 4.6. The import and

The restart functionality 4

IMAGE Programming Guidelines20

export routines must always correspond to each other:
the same number of variables must be read to and written
from file, in the same order.

3. Extra keywords are added to the file imexport.dat, see
Section 4.7 for more details.

4.4 The model init routine

The model init routine <model name>_init should contain the
following blocks. The logic of these blocks is described here in
pseudo code.

 Checking the nocompute option (at the start of the code)
 if nocompute is true then return to the calling routine

Making export files (at the end of the code)
 call <model name>_DataExport for the current year

4.5 The model step routine

The model step routine <model name>_step should contain
a number of blocks related to the restart functionality. The
logic of these blocks is described here in pseudo code.

The first three blocks appear at the start of the executable
code:

 Checking nocompute and readfromfile
 if nocompute is true then
 if readfromfile is true then
 call <model>_CallvarsImport for the current year
 call copyfunf_<model name>
 GOTO block “Export grid restart files” below
 else
 RETURN to the calling routine

Note: The statements ‘call copyfunf_<model name>‘ and
‘GOTO block “Export grid restart files” below’ are only
present when the model uses grid files.

Note: The call to copyfunf is made because in case of
nocompute the model does not call its child models. This call
ensures that data from restart grid files is also read for the
child models.

Note: Instead of a call to copyfunf_<model name>, a list of calls
to copyfunf routines of child models may be issued.

Note: Instead of this block, the call to copyfunf_<model name>
may also be issued in the block ‘Export grid restart files’ below.

Check if run is restart run
 if time is restartyear then
 call <model name>_DataInit
 call <model name>_DataImport for the preceding year
 (time-1)

Import grid restart files (only when the model uses grid data)
 for every grid array for which a restart file is available do
 call readfunf with exportyear =F time (=F current year).

Note: By calling readfunf with the argument exportyear=time,
the subroutine checks if the current year (time) is the restart
year. If so, it reads the grid array from the corresponding
restart grid file; otherwise, it reads the array from the
intermediate grid file. For arrays that must always be read
from the intermediate grid file, readfunf should be called
without the argument exportyear.

The following blocks appear at the end of the executable
code:

Export Data and Callvars restart files
 call <model name>_DataExport
 call <model name>_CallvarsExport

Note: These subroutines write model state variables and
the values of the arguments in the call to the step routine to
restart files when the current year (time) is an export year.

Export grid restart files (only when the model uses grid data)
 for every grid array for which a restart file must be written
 do
 call writefunf with exportyear = time (= current year).

Note: By calling writefunf with the argument exportyear=time,
the subroutine checks if the current year (time) is an export
year. If so, it writes the grid array to the restart grid file; in
any case, it writes the array to the intermediate grid file. For
arrays that must only be written to the intermediate grid file,
writefunf should be called without the argument exportyear.

Examples: see Appendix E, Code lay-out examples.

4.6 Standard model subroutines for restart

This section broadly describes the way in which the model’s
standard subroutines for restart work, in pseudo code. See
also Section 2.5.

 Subroutine <model name>_CallvarsImport
This subroutine reads the values of the arguments in the call
to the step-routine from the ‘Callvars’ restart file.
 call OpenImport
 for every subroutine header variable do
 call DataImport
 call CloseImport

Subroutine <model name>_DataImport
This subroutine reads model state variables from the ‘Data’
restart file:
 call OpenImport
 for every state variable do
 call DataImport
 call CloseImport

The restart functionality 21

Subroutine <model name>_DataExport
This subroutine writes model state variables to the ‘Data’
restart file:
 if year equals exportyear then
 call OpenExport
 for every state variable do
 call DataExport
 call CloseExport

Subroutine <model name>_CallvarsExport
This subroutine writes the value of the arguments in the call
to the step routine to the ‘Callvars’ restart file:
 if year equals exportyear then
 call OpenExport
 for every variable do
 call DataExport
 call CloseExport

Subroutine copyfunf_<model name>
This subroutine copies restart files of child models to the
working directory:
 for every child model do
 call copyfunf_<child_model>

Examples: see Appendix E, Code lay-out examples.

4.7 Control file imexport.dat

The control file imexport.dat contains keywords that control
the way the restart functionality works. For a description, see
the Image User Manual.

When a new model is added to the program, the keywords
<model name>_nocompute and <model name>_readfromfile
must be added to imexport.dat, if these options are desired for
the new model.

Examples: see the file imexport.dat itself.

IMAGE Programming Guidelines22

Calibration functionality 23

This chapter describes the implementation of the calibration
functionality in IMAGE. Detailed information of the calibration
process itself can be found in the IMAGEcalibration.doc file
(see Section 1.4).

The code for the calibration process is incorporated in the
main IMAGE code: all calibration runs are performed with
the same executable as used for the production runs. The
advantage of incorporating the calibration code in the main
IMAGE code is that it is much easier to maintian: modifications
that are made to the main IMAGE code are automatically
made to the calibration code, as well. In this way, the chances
that the main IMAGE code and the calibration code diverge
from each other, unintentionally, are very small.

The IMAGE program is run in calibration mode by setting
the appropriate calibration run number (hereafter referred
to as runno) in the file calibration.dat in the dat directory (for
production use of IMAGE, runno is -1). The calibration process
consists of a number of runs that each perform a subset of
the full IMAGE model for different time periods. The restart
functionality, described in Chapter 4, and in particular the
nocompute function (control file imexport.dat) is used to
bypass complete models that are not needed in a specific
calibration run. Table 1 presents an overview of which models
are used in the different calibration runs, as well as the time
period and time step for each run.

Sometimes, the calibration code is meant to be different
from the main IMAGE code. For this reason, a logical function
incalibrun is available through the module calibration. This
function only returns .TRUE. if one of the arguments is equal
to runno. Modifications within a model or extra output of the
calibration process are incorporated in the code by means
of an if construct if (incalibrun(runno)). As an example, the
following lines taken from tes_step, where subroutine migrate
must not be called in calibration runs 5, 6 and 7:

if (time.eq.timestart) then
 if (time .ne. MINYEAR) then
 call adm70(tfeede,tfeedi,pop,agrproda,agrtradea, &
 agrtradec,dssra,dssrc,nrane,nrani,optlist)
 call lcm70(arprod,croparea,frothc,frharv,grazintens,
 mf)
 call lrm70(arprod,agrproda,agrtradea,agrtradec,dssra,
 dssrc)
 endif
 if (.not.(incalibrun(5,6,7))) call migrate
 (time,optlist%migropt)
endif

If the modification is just a few lines, it can be put directly
under the if construct. Larger modifications or modifications
that cannot be incorporated in the same file are to be put in
extra files. At this moment the following extra files exist:

 � tes_step_run4, performs a modified tes_step
 � adm_calib_run6, performs extra computations in model

adm for run6 and run7
 � lcm_step_run8, performs a modified lcm_step
 � tes_step_run9, performs a modified tes_step
 � copy_calib_run10, performs extra copying action for a

large number of files
 � copy_calib_run12, performs extra copying action for a

large number of files

The calibration process is to be performed in the directory
IMAGE25. The main batch file is PREPROCESSING_1_13.bat
in the directory bat. This script runs the complete calibration
process. In the initdata directory of IMAGE25 there are files
calibration_runno.dat, imexport_runno.dat and time_runno.dat
and some more run specific files present with the settings for
each calibration run. These files are copied to the runxx/dat
directory before a specific calibration run. For each calibration
run, a batch script mkrunXX.bat (dir:bat/mkrun) is called
that performs these copying actions and other necessary
preparations.

For a description of the whole calibration process, see also
the IMAGEcalibration.doc on the calibration directory.

Calibration functionality 5

IMAGE Programming Guidelines24

Routines calculated in the different calibration runs

run1 run2 run3 run4 run5 run6 run7 run8 run9 run 10 run 11 run 12
AOS1 x x x x x x x x
Atmochem x x x x x x x x
 addemiss

Climate

Ocean

Radiat

Readies

Slr

Worldtozoom

TES x x x x x x x x x x x x
Admlcm x x x x x x x x
Adm x x x x x x x
Lcm x x x x x x x x
wood x x x x x x
 Drivforce x x x x x x x
Biofuel

Ccm x x x x
Carbon x x x x
Luem x
Soil x x x x x x x x x x
Tvm x x x x x2 x3 x4

Wat x x x x x
Writetes x x x x
Period

Timestart 1970 1970 1765 1765 1970 1970 1970 1970 1970 1970 1970 1970
Timestep 1 1 5 1 5 1 1 1 5 1 1 1
Timestop 1969 1969 1970 1969 2000 2000 2000 2000 2000 2000 2000 2000

1 Only atmochem_init is called for initialisation reasons, AOS is then set to nocompute.
2 Retrun from tvm_init immediately after climscale with tvm set to nocompute
3 Retrun from tvm_init immediately after climscale with tvm set to nocompute
4 Retrun from tvm_init immediately after climscale with tvm set to nocompute

Tabel 5.1

Writing output messages 25

Messages must be written using the message system (see
message.f90).

To activate the message system, the subroutine
readMsgSettings must be called once, at the start of the IMAGE
program, so before any calls to message subroutines. The
subroutine msg_stop is called once at the end of the IMAGE
program to stop the message system after the last call to a
message subroutine.

The options in the file message.dat determine the amount
of output that is generated by the message routines. For
example, an option can be set to turn off any message that
is not an error message. In this case, calls to subroutines
to produce, for example, warnings or information will not
produce any output.

Producing a message requires two steps in the code. First,
the program has to prepare the message text in the character
buffer array msgstr stored in the module message, and then call
the message subroutine:

 � write the message into msgstr
 � call <type>msg with msgstr as argument, where <type> is

error, warn, info, trace or debug:
 – errormsg

This subroutine produces an error message. This type
of message is given when an undesired situation is
detected that has a serious impact on the results from
the program. In many cases, proceeding has no use and
the program will stop after issuing the error message.
Error messages cannot be suppressed by settings in the
message.dat file.

 – warnmsg
This subroutine produces a warning message. This type
of message is given when an undesired situation is
detected that has little or no effect on the results from
the program.

 – infomsg
This subroutine produces an informative message. This
type of message is given to provide the user with some
information about the process.

 – tracemsg
This subroutine produces a trace message. Every sub-
routine issues a trace message before starting its actual
processing. These messages give information about the
location of an error if one should occur. Every subroutine
must start with a call to tracemsg, see Section 7.4.1.

 – debugmsg
This subroutine produces a debug message. Calls
to debugmsg are placed at specific places within the
program process. Debug messages present intermedi-
ate results, which give the developer extra information
about the process that is useful while searching for the
location of a program malfunction.

All the <type>msg routines have an optional second argument
(after msgstr) that allows the programmer to assign a level to
the message. This level indicates how serious the message
is. If the level is high, then this indicates that the message is
serious; a low level indicates a message that is of less interest.
By setting a threshold level in the message.dat file, the user
can indicate how serious a message must be to be actually
printed or written to screen. Messages with a level below the
threshold in message.dat are ignored by the message system.
In this way, the user can determine the amount of output that
is produced.

Writing output messages 6

IMAGE Programming Guidelines26

Code aspects 27

7.1 Terminology
1. Parameters: Fortran PARAMETER constants, such as array

dimensions and loop limits.
2. Physical constants: the ‘constants’ in the _DataDecl module

(which are actually variables that are given a value only
once at initialisation). See Section 2.2.2 for an explanation.

3. Model state variables: Variables shared by routines of one
model (as opposed to local variables within subroutines,
that can only be accessed from the subroutine itself) and
which are defined in the _DataDecl module. See Section
2.2.2 for an explanation.

4. Header variables: Subroutine arguments.
5. Module: A Fortran MODULE, that is, a module as defined in

the Fortran programming language.
6. Model: A set of subroutines and a module that together

implement a mathematical description of a particular
aspect of the environment. See Section 2.2 for a discussion
of the concept of models in IMAGE.

7. Subroutine: A Fortran SUBROUTINE, that is, a subroutine as
defined in the Fortran programming language.

7.2 Naming conventions
1. Subroutine and module names: names are of the form

<model name>_<function>, where <model name> is
the name of the model, and <function> is composed of
acronyms beginning with an upper-case letter. The file
containing the subroutine or module has the same name.
Examples: ‘aos_DataDecl’, ‘ccm_DataInit’.

2. PARAMETERs: names are in upper case.
Note: No underscores are used.
Examples: ‘maxyear’, ‘realsize’.

3. Physical constants (in the models DataDecl file): names are in
upper case.
Note: No underscores are used.
Examples: ‘tabwdistag’, ‘ercat1’.

4. Variables (in the models DataDecl file and in subroutines):
names are in lower case. Upper case letters to distinguish
acronyms or component names are allowed.
Note: No underscores are used.
Examples: ‘eco2ab’, ‘ForestManag’, ‘frNH3spread’.

5. Variables defined on cell level as global arrays (grid variables):
as all variables, except that the name starts with a ‘g’ for
global. However, when subroutines only handle one grid
cell (e.g. fnpp), the variables still start with a ‘g’.
Examples: ‘gnep’, ‘gfrac’

7.3 Coding guidelines
1. Programming language: The programming language is

Fortran 90.
2. Source code format: New code must be written in Fortran

90 free format. The source code file extension is .f90.
3. Source files: In principle, each subroutine is contained in a

separate source file. Exceptions are subroutine modules in
libraries.

4. Modules: Modules may only be used for model data
modules ‘_DataDecl’ (one per model) and subroutine
modules in libraries.

5. Subroutine length: A subroutine should not contain more
than 600 lines, comment lines included.

6. The save statement: Save statements are not allowed
outside model data modules. Variables that must not
become undefined should be stored in the module.
Otherwise, they cannot be reached by the import and
export functions for restart purposes.

7. Real type declaration: Variables and arrays of type single
precision real must only be declared by the keyword real,
and not by real*4. Otherwise, the length of real variables
cannot be controlled by a compiler option; see Appendix
D.
Likewise, variables and arrays of type double precision real
must only be declared by the keyword double precision,
and not by real*8.

8. PARAMETER constants: Parameter constants should only
be declared in the file image.fip. These constants are
of a general, not model-bound nature. Constants that
are specific for a model should be declared as physical
constants in the model data module.

9. Local subroutine variables: Local subroutine variables must
be dynamically initialised, with assignment statements,
and not in the declaration _DataDecl at the model level.

10. Hard-coded numbers: The source code should not contain
any hard-coded numbers. These numbers should be
defined either as Fortran PARAMETERs or as physical
constants in the _DataDecl module.

11. Tabs: Tabs are not allowed in the source code, because
editor-dependent lay-out must be avoided. The indentation
depth must be three spaces per level.

12. Message system: Messages must be written using the
message system. See Chapter 6.

13. Code comment: Comment in new code always starts with
an exclamation mark (‘!’). When the comment is on a
separate line, the exclamation mark is in the first position.

Code aspects 7

IMAGE Programming Guidelines28

14. Format statements: Format statements of one program unit
must be grouped together, and form the last statements
before the end subroutine statement.

15. Use statement: Unless all variables of a module are used in
a subprogram, the variables which are actually used should
be selected by means of the keyword only.

16. Do construct: In new code, only the block form of a
do construct must be used. This avoids having to use
statement labels.

17. Common blocks: The use of common blocks is prohibited.

7.4 Code lay-out

7.4.1 Subroutine lay-out
Every subroutine has a standard lay-out, as follows:

 � A comment heading containing four parts which must
contain meaningful text:

 – The subroutine name.
 – The ‘called by’ statement
 – The ‘objective’ statement
 – The section with information from the version of the

management system
 � The first block of statements, in a fixed order:

 – Subroutine statement
 – Use statements
 – Implicit ‘none’ statement
 – Comment header with text ‘Input/output variables’
 – Input and output variable declarations
 – Comment header with text ‘Local variables’
 – Local variable declarations
 – Comment header with text ‘Initialisation’
 – Initialisation statements
 – Comment header with text ‘Start of source code’
 – Statements concerning nocompute and readfromfile

(only in step routines)
 – Statements concerning restart run (only in step

routines)
 – A call to tracemsg

 � The actual processing code
 � The last block of statements

 – Calls to export subroutines (only in step routines)
 – Comment header with text ‘Formats’
 – Format statements
 – The end subroutine statement

For an example of the subroutine lay-out, see Appendix F,
Code lay-out examples.

7.4.2 Data module lay-out
Every data module (‘_DataDecl’) has a standard lay-out, as
follows:

 � A comment heading containing four parts:
 – The module name.
 – The ‘called by’ statement (empty)
 – The ‘objective’ statement.
 – The section with information from the version of the

management system
 � The block of statements, in a fixed order:

 – Module statement
 – Use statements
 – Implicit ‘none’ statement

 – Save statement
 – Comment header with text ‘Exported constants’
 – Exported constants
 – Comment header with text ‘Exported variables’
 – Exported variables (with initialisations)
 – End module statement

Note: The term ‘exported’ is used outside the context of the
restart functionality. Here it means ‘exporting’ items from the
module to the subroutines.

For an example of the module lay-out, see Appendix F, Code
lay-out examples.

7.4.3 Lay-out of MODULES other than
<model name>_DataDecl

The code contains several Fortran90 MODULES other
than the <model name>_DataDecl modules. The message
MODULE is a good example. In fact, the use of MODULES is
encouraged, as this is the preferred way of programming in
Fortran90.

The lay-out of such a module is as follows:
 � A comment heading containing four parts:

 – The module name.
 – The called-by section. (empty)
 – The purpose section.
 – The subversion section

 � The block of statements, in a fixed order:
 – Module statement
 – Use statements
 – implicit ‘none’ statement
 – Exported constants
 – Exported variables (with initialisations)
 – Exported procedures
 – Internal constants
 – Internal variables
 – Internal procedures
 – ‘contains’ statement
 – subroutines and functions
 – End module statement

Every block is preceded by an appriopriate comment header.

Examples: see funf_mod.f90 and message.f90.

Version Control 29

At the moment, svn and tortoise are used as version control
tools for development of the IMAGE model. All standard func-
tionalities, such as creating tags and branches, are available.
The IMAGE developer is expected to use this version control,
the most recent install files and User manual are provided
(see Section 1.4).

Version Control 8

IMAGE Programming Guidelines30

Checklist IMAGE Programming Standard 31

This checklist is meant as an assisting tool for inspecting the
IMAGE code. Inspection happens when changes have been
made, or when a new model has been developed.

The table below shows a number of topics on which the
program can be examined. When the inspection of one topic
is finished, a checkmark can be placed in either the column
‘Yes’ or the column ‘No’. When in the ‘No’ column, a number
can be denoted referring to the text below the checklist
describing the nature of the problem.

Descriptions of findings
1. Description 1.
2. Description 2.
3. ….

Checklist IMAGE
Programming Standard

9

Inspection topic Yes No
In case of a new model, are all requirements related to the model relations met? See Section 2.3.1.

Does the new model conform to the model definition requirements? See Section 2.3.2.

In case of a new model, does the new code obey the rules concerning the data flow? See Section 2.3.3.

In case of (an addition to) a library, does the new code meet the
requirements for library items? See Section 2.7.

In case of a new model, do the standard data module and subroutines exist, and
do they conform to the requirements? See Sections 2.4 and 2.5.

In case of a new grid file or a new regional file, does the new file obey the rules for these files? See Chapter 3.

Do new or modified step routines and the standard subroutines conform to
the rules relating to the restart functionality? In case of new model, are the
appropriate keywords added to the file imexport.dat. See Chapter 4.

In the new or modified code, are messages written with the message
system in the appropriate way? See Chapter 6.

Does new source code obey the rules for naming conventions and coding guidelines? See Sections 7.2 and 7.3.

In case of a new source code file (e.g. subroutine, module, library) ,
does it obey the rules for code lay-out? See Section 7.4.

Tabel 9.1

IMAGE Programming Guidelines32

This appendix gives an overview of the various aspects
concerning the restart functionality. It is meant as
background information to better understand the rules
imposed on models when using this functionality. See Section
4.

Functions
The restart functionality supports three functions:

 � the restart run
The restart functionality enables the program to resume
a simulation at a particular year for which the state of the
entire model has been saved in a previous IMAGE run.

 � the nocompute option
The restart functionality offers each model the possibility
to skip its own computations.

 � the readfromfile option
The restart functionality provides every model with the
possibility to read data from an earlier run and use it as
computation results instead of performing the calculations
itself.

 Types of restart files
There are three types of restart files:

 � Data restart file : contains model module variables
 � Callvars restart file : contains model header variables
 � Grid restart file : this is a copy of a grid file as used

during the simulation

Initialisation of the variables that control a restart
The control variables used by the restart functionality (e.g.
the year in which the restart run should start) are stored in
the Fortran 90 module ImExport. This module contains data
and a set of supporting subroutines. The data is initialised
by subroutine InitalizeImExport, which is called by the main
program unit of IMAGE.

Restart run
When restartyear in the file imexport.dat is non-zero, the
simulation run is a restart run. A restart run starts off with
data from the restart year, written by a previous run. The
restart data is contained in Data restart files, and also in
grid files. The main program unit sets the starting time to
restartyear and every model will obtain its starting data from
restart files.

Note: A restart run needs data from the year before the restart
year. So, when for instance a restart run is started in the year
1995, it needs starting data from the year 1994.
Note: The restart run does not read the physical constants from
the restart file, but gets them as usual from the appropriate
.const files.

Nocompute option
For every model there is a nocompute keyword in the file
imexport.dat. When this keyword is 1, the model does not
perform any computations.

Readfromfile option
For each model there is a keyword readfromfile in the file
imexport.dat. When nocompute is true (no computations are
performed) and readfromfile is true, the model reads data
from a Callvars restart file, and sometimes also from grid files.
The imported data will be used as computational results.
Note: The readfromfile model(s) will need restart files for all
time steps concerned.

Exporting restart files
Restart files are created and filled (i.e. ‘exported’) for every
year that is an export year. Export years are defined in the
control file imexport.dat, with the keyword expyears.
Note: Exported restart files support restart runs as well as
readfromfile runs.

Appendix A
Restart functionality

 Grid file technical details 33

 Format
Gridfiles are unformatted Fortran direct access files. Each
gridfile contains only one record (see Fortran manuals for a
description of the concept of records: records are the units
into which Fortran files are divided), which contain the stored
array. The record length (recl) is equal to the number of bytes
occupied by the array. A compiler option (assume:byterecl)
ensures that the record length of unformatted files can be
given in bytes.

File name
The grid file name is constructed from several elements, as
follows:

G<filnam>[_<year>][.<dimlen>].[<gridtyp>]UNF<arrtyp>[.
R<expyear>]

The square brackets ([…]) indicate that the enclosed part
may be empty.

Clarification of the name elements:
G This letter is always the first character of

the file name, indicating that it is a global array.
<filnam> The base name of the file, referring to the array

name.
_<year> The simulation year to which the array relates.
 This year may appear in both input and output

file names.
<dimlen> The length of the second array dimension.
 This length appears when the array is

two-dimensional.
 The length of the first dimension is equal to the

number of grid cells.
. The separation character between the file

name and the extension.
<gridtyp> The grid type of the array:
 <empty> means: land, and eventually inland

water cells
 ‘T’ means: grid-cell number indexed by row and

column (row, column)
 ‘F’ means: total grid cell area, uniform for each

latitude, therefore, dimension row
UNF The fixed name part of the extension; it means

‘unformatted’.

<arrtyp> The array type:
 0 means type real
 1 means type integer*1 (or logical*1)
 2 means type integer*2
 4 means type integer*4
.R<expyear> The simulation year of the export file.
 This year appears when the file is an export file

for restart.

Examples: greg.unf0, gfrac_1985.19.unf0, gdaytmp.12.unf0.r1975.

The size of a grid file with a real array depends on the number
of array elements, and on the size of each array element.
The latter is related to the precision of real arrays, see also
Appendix D.

Appendix B
Grid file technical details

IMAGE Programming Guidelines34

Regional files are text files that contain values over a number
of years, for all regions. The values can be scalars (one value
per region), 1D arrays (a list of values per region), 2D arrays (a
2D array per region) or 3D arrays (a 3D array per region).

Regional files are used both as input files (scenario files with
extension ‘.scn’ or otherwise with extension ‘.out’) or output
files (with extension ‘.out’)

The structure of regional files is as follows:

The first line has the following structure (in Extended BNF
notation):

“!“,(“real“|“integer“),<varname>,“
[“,<dimname>{,<dimname>},“]“,[“ (t)“],
 “; Unit = “,<unitname>,“; Label = “,<label>

with the following explanation:
! indicates that this is a comment line
real|integer indicates whether values are reals or integers
<varname> the name of the variable that is stored in the

file
<dimname> name of a dimension, for example, NAPT or

NR. The last dimension is usually NR or one of
its derivatives, such as NRT

‘(t)’ is only present if the variable is time
dependent

<unitname> name of the units in which the variable is
given, for example, Gg/yr

<label> a text to explain the meaning of the variable.

Example:
! real AGRTRADEA [NAPT,NRT] (t); Unit=F Gg/yr; Label=F Net
export of animal products

The second line has the following structure (in Extended BNF
notation):
“!“,(“real“|“integer“),<varname>,“ [“,<dim>{,<dim>},“]“,[“
(t)“],“ = [“

With the following explanation:
real|integer indicates whether values are reals or

integers
<varname> the name of the variable that is stored in

the file
<dim>[,<dim>*] the numerical value of each dimension, for

example, ‘6,25’
‘(t)’ is only present if the variable is time

dependent

Example:
real AGRTRADEA [6,25] (t) = [

After the first two lines, number of blocks follow. Each block
consists of a first line that only contains the year for which the
block gives the values (e.g. ‘1970’), which is followed by the
values of the variable for that year. The number of values is
obviously the product of all dimension sizes. Each line has a
number of values that is equal to the last dimension (typically
NR or one of its derivatives). Successive lines concern
successive indices in the one-but-last dimension, and so on.

The last line of the file only holds the character ‘];’ to indicate
the end of the file.

Appendix C
Regional Files

Real arrays and grid files 35

In IMAGE, each real array is declared with the type declarant
real. Normally, these arrays have single precision. However, if
desired, the precision of these arrays can easily be changed by
submitting the compile time option /real_size:

 � /real_size = 32 means single precision (occupies 32 bits)
 � /real_size = 64 means double precision (occupies 64 bits)

In Visual Fortran, this option can be set by the path:

Project Settings Fortran Default Real Kind:
 � Default Real Kind = 4 means single precision

 (occupies 4 bytes)
 � Default Real Kind = 8 means double precision

 (occupies 8 bytes)

Note: When setting the compiler option/real_size, the
program parameter constantrealsize (in image.fip) must be set
accordingly:

 � realsize = 4 means single precision (occupies 4 bytes)
 � realsize = 8 means double precision (occupies 8 bytes)

The precision of real arrays in input grid files is defined by the
programs that write those files. The IMAGE program has to
know the actual precision; therefore, this is defined by the
parameter constant input_realsize (in image.fip):

 � input_realsize = 4 means single precision
 (occupies 4 bytes)

 � input_realsize = 8 means double precision
 (occupies 8 bytes)

The IMAGE defaults are:
 � Internal real arrays have single precision; parameter con-

stant realsize is 4; compiler option real_size is 32.
 � Note: This implicates that real arrays in intermediate grid

files also have single precision.
 � Real arrays in input grid files have single precision; parame-

ter constant input_realsize =F 4.
 � Note: after reading, these arrays are converted to internal

arrays.

See also Appendix E, Software, Program generation, option
real_size.

Appendix D
Real arrays and grid files

IMAGE Programming Guidelines36

 Development environment
 Microsoft Visual Studio / C++ vs 6.0
 Compaq Visual Fortran Standard Edition vs 6.6C
 SubVersion vs 1.4.5 (freeware)

Program generation
The production version of IMAGE is generated by ‘Win32
Release’ as active configuration. The more important
compiler options are mentioned here; the values shown are
examples. For a detailed enumeration of all options, see the
file IMAGE_PC.dsp.

Relevant options:

/architecture:k7 The code is generated for processor type
AMD Athlon.

/tune:k7 The generated code is optimised for pro-
cessor type AMD Athlon.

/assume:byterecl The record length of unformatted files is
expressed in bytes.

/optimize:0 No optimisation is applied.

/real_size:64 The precision of real variables is set to
double precision.

/automatic This option requires that local variables be
put on the run-time stack.

/stack:0xfffffff In relation to the option /automatic, this
link option assigns a large size to the run-
time stack.

/fpconstant This option requires that a single-precision
constant assigned to a double-precision
variable be evaluated in double precision.

System dependencies
At some points, the source code contains deviations from the
Fortran90 standard. In principle, this may cause problems on
other platforms.

 � Type declarations with the asterisk character (*) to
indicate size. Examples: integer*1, integer*4, integer*8,
logical*1. (Note that real*4 and real*8 are not allowed, see
Section 7.3)

 � The use of a variable between angle brackets in a format
statement. Examples: format(<NRT>(1x,ES24.15e3)), forma
t(<NCHLOR>(1x,ES24.15e3)).

Appendix E Software

Code lay-out examples 37

 Subroutine lay-out
!==

! Subroutine: SLR_STEP

!==

! Called by : AOS_STEP

!==

! Purpose : Calculate sealevel time step

!==

! Version info:
 ! $URL: file:///V:/…………/src/aos/slr/slr_step.f90 $
 ! $Revision: 303 $
 ! $Date: 2007-09-28 12:54:01 +0200 (vr, 28 sep 2007) $

!==

subroutine slr_step(time, climdat, dtem, tocn)

use constants, only: NOCLAY, NSEAL, NSEALT
! subroutine modules
use message, only: tracemsg
use imexport
! imported types
use aos_DataDecl, only: Climatedattype
! data modules
use slr_DataDecl
use timeSettings, only: timestart

implicit none

!==

! Input/output variables
real, intent(in) :: time
type(Climatedattype), intent(in) :: climdat
real, intent(in) :: dtem
real, dimension(NOCLAY), intent(in) :: tocn

!==

Appendix F
Code lay-out examples

IMAGE Programming Guidelines38

! Local variables
integer :: oclay
integer :: glac

real :: tl1
real :: coefe
real :: sibit
real :: si

! Sea level rise (cm)
real, dimension(NSEALT) :: sealevel =F 0.

!==

! Initialisation
oclay =F 0
glac =F 0

tl1 =F 0.
coefe =F 0.
sibit =F 0.
si =F 0.

sealevel =F 0.

!==

! Start of source-code

! Check if this system’s computations need to be done
if (sysinfo(SS_AOS_SLR)%no_compute) then
 if (sysinfo(SS_AOS_SLR)%read_from_file) then
 call slr_CallvarsImport(time, climdat, dtem, tocn)
 endif
 return
endif

! Check if a restart is wanted
if (restart(nint(time))) then
 call slr_DataImport(time-1)
endif

call tracemsg(‘slr_step’)

<actual processing code>

call slr_DataExport(time)
call slr_CallvarsExport(time, climdat, dtem, tocn)

!==

! Formats
9 format(<NSEALT>(1x,ES24.15e3))

end subroutine slr_step

!==

Code lay-out examples 39

Data module lay-out

!==

! Module : RADIAT_DATADECL

!==

! Called by : -

!==

! Purpose : This module contains shared definition data for RADIAT

!==

! Version info:
 ! $URL: file:///V:/M02a_schemas_mnp/svn-repos/…/radiat_DataDecl.f90 $
 ! $Revision: 303 $
 ! $Date: 2007-09-28 12:54:01 +0200 (vr, 28 sep 2007) $

!==

module radiat_DataDecl

use constants, only: NR, FRITER, NITER
use aos_DataDecl, only: Radiativeforcingtype

implicit none

!---------------------!

! EXPORTED CONSTANTS!

!---------------------!

! Indicator for regional conversion from IMAGE regions to regions of
! Climate research Group (neccessary for downscaling of climate) ARRAY
integer, dimension(NR,FRITER:NITER), save :: RDOWN

! Tropospheric ozone sensitivity coefficient (W/m2/DU). Table 6.3 TAR
real, save :: TROPOZSENS

! Radiative forcing coefficients (W/m2*ppb)
! Data from IPCC WG1 TAR Government and expert review draft Table 6.7

! Chlorides
real, save :: RADCFC11
real, save :: RADCFC12
real, save :: RADCFC113

! Halons
real, save :: RADHA1211
real, save :: RADHA1301
real, save :: RADCH3BR

! PFCs
real, save :: RADCF4
real, save :: RADC2F6
real, save :: RADSF6

IMAGE Programming Guidelines40

! HFCs
real, save :: RADHFC23
real, save :: RADHFC32
real, save :: RADHFC4310

!--------------------!

! EXPORTED VARIABLES!

!--------------------!

! Radiative forcings in 1990 (W/m2)

type(Radiativeforcingtype), save :: qrf90

! Scaling factor for reference year (1990; as in Schlesinger, 2000)
real, dimension(FRITER:NITER), save :: gscale =F 0.

end module radiat_DataDecl

Colophon 41

Colophon

Responsibility
Netherlands Environmental Assessment Agency (PBL)

Authors
PBL (E. Stehfest, L. de Waal), VORtech

Lay out
Studio RIVM

Contact
Liesbeth. deWaal@pbl.nl
IMAGE-info@pbl.nl

Netherlands Environmental Assessment Agency, June 2010

IMAGE Programming
Guidelines

IMAGE Programming Guidelines

This document describes the requirements and guidelines

for the software of the IMAGE system. The motivation for

this report was a substantial restructuring of the source

code for IMAGE version 2.5. The requirements and guide-

lines relate to design considerations as well as to aspects of

maintainability and portability. The design considerations

determine guidelines about subjects, such as program struc-

ture, model hierarchy, the use of data modules, and the error

message system. Maintainability and portability aspects

determine the guidelines on, for example, the Fortran 90

standard, naming conventions, code lay-out, and internal

documentation.

Background Studies

