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Rapport-in-het-kort 

PCLake is een waterkwaliteitsmodel ontwikkeld door het RIVM. Het model kan onder 
andere gebruikt worden om het effect van voorgestelde maatregelen op de waterkwaliteit van 
meren te berekenen. De grote gedetailleerdheid van het model leidt tot relatief lange reken-
tijden, wat een bezwaar vormt als het model ingezet wordt in scenariostudies met een groot 
aantal simulaties. Doel van deze studie is het opstellen van een metamodel PCLake, dat wil 
zeggen een model van het model PCLake dat – bij benadering – dezelfde resultaten genereert, 
maar in een aanzienlijk kortere tijd. De operationele doelstelling van deze studie was om het 
effect van acht belangrijke omgevingsvariabelen op het chlorofylgehalte van het meer, zoals 
gesimuleerd door PCLake, te beschrijven met behulp van een metamodel. Deze invoer-
variabelen waren de oppervlakte en diepte van het meer, de instroomsnelheid van het water, 
het fosfaat- en slibgehalte van het instromende water, de verhouding tussen het nitraat- en het 
fosfaatgehalte van het instromende water, de visserijdruk en de oppervlakte moeras. Voor de 
metamodellering werden drie verschillende methoden toegepast: (1) regressieboom, (2) radial 
basis function network en (3) interpolatie. In een vergelijking tussen de drie methoden bleek 
dat interpolatie de meest nauwkeurige benadering gaf van de door PCLake gesimuleerde 
waarden. De overeenkomst tussen PCLake en het meest nauwkeurige metamodel, toegepast 
op een aselecte steekproef van 80000 punten uit de invoerruimte, leverde een R2 van 0,965. 
De rekentijd van alle metamodellen varieerde van 1 – 2 milliseconden per berekening, tegen 
9 seconden voor PCLake. Omdat het metamodel is opgesteld voor een breed bereik van 
invoervariabelen, houdt dit in dat het gebruikt kan worden in scenariostudies, om in de plaats 
van PCLake voorspellingen te doen voor de waterkwaliteit in toekomstige situaties. Naast 
een methodevergelijking bevat dit rapport ook practische aanwijzingen, in de vorm van een 
aantal procedures, over de toepassing van de bestudeerde methoden. Hiermee kunnen ook 
soortgelijke metamodellen worden gemaakt. 
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Abstract 

PCLake is an integrated model simulating the water quality of lakes, developed at RIVM. 
Among other things, the model may be used to evaluate the effects of measures that are 
proposed to enhance the water quality of lakes. The level of detail in PCLake is reflected in 
relatively long execution times. The objective of this study was to develop a metamodel for 
PCLake – a model of the model PCLake – that generates approximately the same results in a 
considerably shorter time. The operational question in this study was to describe the effects 
of eight environmental and management factors on the chlorophyll content of the lake, as 
simulated by PCLake, with help of a metamodel. The factors were the depth and area of the 
lake, the inflow rate of water, the concentrations of phosphorus and inorganic matter in the 
inflowing water, the ratio between nitrogen and phosphorus concentrations in the inflowing 
water, the fishing rate, and the area of marsh along the lake. Three metamodelling techniques 
were applied: (1) regression tree, (2) radial basis function network, and (3) interpolation. 
Comparison of the techniques showed that interpolation gave the most accurate estimation of 
output values simulated by PCLake. The correspondence between PCLake and the most 
accurate metamodel, applied to a random sample of 80,000 points in input space, was 
characterised by R2 = 0.965. The duration of one calculation by all metamodels ranged from 
1 – 2 milliseconds, compared to 9 seconds for PCLake. In combination with the broad ranges 
of input variables that the metamodel was developed for, this implies that the metamodel may 
be used to substitute PCLake in scenario studies where predictions for future conditions are 
made. Apart from a comparison of modelling techniques, the report also contains practical 
instructions for the application of the techniques that were studied. 
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1. Introduction 
PCLake is an integrated model simulating the water quality of lakes, developed at the Dutch 
National Institute for Public Health and the Environment (RIVM) (see, e.g., Janse and Van 
Liere, 1995; Janse, 1997). The model combines a description of the dominant biological 
components with a description of the nutrient cycle in shallow lake ecosystems. Among other 
things, the model may be used to evaluate the effects of proposed measures on the 
chlorophyll content, the phytoplankton types, and macrophyte vegetation of lakes. The level 
of detail in PCLake is reflected in its large size and relatively long execution time. In 
combination with the specialized software needed – PCLake runs in an ACSL environment – 
this may cause inconvenience to users who employ the model for applied purposes, in 
particular for scenario studies with large numbers of simulations. An approved method to 
overcome this problem is to use an approximation model. Approximation models are often 
referred to as metamodels since they provide a model of a model. 
The main objective of this study was to develop a metamodel for PCLake that reduces the 
computational cost. Limiting conditions for the development of a metamodel were a close 
agreement between the results of the metamodel and the original model, and keeping the time 
needed to develop the metamodel within practical limits. The time needed to develop the 
metamodel is dependent on the number of executions used for metamodelling, and on the 
metamodelling process itself. This item has consequences for the author of the model; it 
determines the time it takes to produce a new metamodel when a new version of the original 
model has been developed. 
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2. Materials and methods 

2.1 Inputs and outputs of PCLake 
PCLake generates a large set of output variables. In this study metamodelling has been 
confined to simulation of the chlorophyll-A concentration in the water (mg m–3) during the 
summer after a period of 20 years. Each model run was executed with constant input values. 
In most cases, after 20 years, stabilisation of the simulated chlorophyll concentration had 
occurred. In developing the metamodel, variation in eight input variables was taken into 
account. The ranges of the input variables used in the study are given in Table 1. The ranges 
were determined with help of measured data from Portielje and Van der Molen (1998). The 
ranges do not only include present-day values but also possible future values that may be 
included in scenario studies with PCLake. Because of its mechanistic structure, PCLake can 
be used for simulations outside the range of input conditions that were used to estimate model 
parameters, more specifically to generate predictions for future conditions. The ranges of 
input variables used in this study imply that the metamodel may also be used for this purpose. 
 
Table 1 Input variables and their ranges used in the development of the metamodel 
Description of the 
variable 

Name of the 
variable in 
PCLake 

Range Comments 

Fetch 
 

cFetch 100 – 7500 m  

Depth 
 

sDepthW0 0.5 – 6 m  

Inflow of water cQIn 8 – 80 mm d-1 Leading to residence 
times between 0.01 and 
2 years 
 

Phosphorus concentration 
in inflowing water 
 

coPIn 0.00001 – 0.0005 g l-1 Phosphorus loading is 
cPload = coPin * cQin 

Ratio between nitrogen 
and phosphorus loading 
 

rNP 5 - 25 Nitrogen loading is 
cNload = rNP * cPload 

Fishing rate kHarvFishSum, 
kHarvFishWin, 
kHarvPiscSum, 
kHarvPiscWin 
 

0 – 0.000822 d-1 Fraction of fish harvested, 
equals 0 – 0.3 y-1 

Concentration of 
inorganic matter in 
inflowing water 
 

cDIMIn 1 – 20 mg l-1  

Relative marsh area fMarsh 0 – 0.2 Relative to the complete 
area of the lake 

 
In the present version of the model, equal values are used for fishing rates of predatory and 
herbivorous fish species, in summer and in winter. Therefore, fishing rate was considered one 
single variable. In PCLake, the name of the output variable in PCLake, used for 
metamodelling, was oChlaSum20. 
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2.2 Technical information 
The computational costs of both PCLake and the metamodel are given for a PC with a 
1.7 GHz Pentium 4 processor and 512 MB RAM. The operating system was Windows NT. 
On this system, the average execution time of PCLake, run in an ACSL Math 1.2 
environment, was 9.0 seconds. Integration method was the second order Runga-Kutta-
Fehlberg algorithm. The Math script used to run PCLake is given in Appendix 1. 
 

2.3 Metamodelling techniques 
In the study, three techniques were used to develop a metamodel for PCLake, (1) regression 
trees, (2) radial basis function networks in combination with regression trees, and (3) 
interpolation. Radial basis function networks (RBF networks) were chosen on the basis of 
Jin et al. (2000). In their comparative study of four metamodelling techniques – RBF 
networks, Polynomial Regression, Kriging Method, and Multivariate Adaptive Regression 
Splines – RBF networks gave the best results. The combination of RBF networks and 
regression trees was advocated by Orr (1999a). A regression tree was also used as a separate 
metamodel. As another alternative, interpolation was used because of its robustness. 
 

2.3.1 Regression trees 
The basic idea of a regression tree is to recursively partition the input space in two and 
approximate the function in each half by the average output value of the sample it contains. 
Each split is perpendicular to one of the axes so it can be expressed by an inequality 
involving one of the input variables (xk > b, e.g. depth > 2.5). The input space is thus divided 
into hyperrectangles organised into a binary tree. Each split is determined by the dimension 
(k) and boundary (b) which together maximally distinguish the response variable in the left 
and right branch, that is the split which minimises the residual square error between model 
and data over all possible choices of k and b. A disadvantage of the regression tree 
metamodel is the discontinuity caused by the output jumping across the boundary between 
two hyperrectangles. To illustrate the principle, Figure 1 shows the chlorophyll concentration 
as a function of the phosphorus concentration of the inflowing water and the depth of the 
lake, as simulated by PCLake, and as approached by the regression tree model. In the 
example, the chlorophyll values were calculated at fixed average values of the remaining six 
input variables. 
When constructing a regression tree, it is to be decided when to stop growing the tree (or 
equivalently, how much to prune it after it has fully grown). Tree growing is controlled by 
two parameters, the node size at which the last split is performed (minsize), and the 
minimum node deviance before growing stops (mindev). In this study, values of minsize=2 
and mindev=0 were used. This implies that the tree was fitted perfectly to the data. In 
statistical terms, this may not be the optimal model (most probably, it is largely 
overparameterised), but it was considered optimal for the practical purpose of this study. 
 

2.3.2 RBF networks 
RBF networks are described by Orr (1996, 1999a). Note that the term ‘network’ is equivalent 
to the term ‘model’ that is more often used by statisticians. 
RBF networks are linear models. The general characteristic of linear models is that they are 
expressed as linear combinations of a set of fixed functions. These fixed functions are often  
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Figure 1 The chlorophyll concentration as a function of the depth of the lake and the phosphorus 

concentration of the inflowing water, as simulated by PCLake (a), and as estimated by the 
regression tree metamodel (b) and the RBF network (c).
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called basis functions. A linear model f(x) composed of m basis functions, hj(x), with weights 
wj, takes the form: 
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RBF networks are a special class of linear models in that they are linear combinations of 
radial basis functions. The characteristic feature of radial functions is their response 
decreases (or increases) monotonically with distance from a central point. A typical radial 
function, often used in RBF networks, is the Gaussian: 
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Parameters are the centre c and radius r of the function. 
In developing an RBF network with use of the Gaussian function one should determine the 
number of basis functions needed, and the parameters which they contain, c and r. In this 
study, these questions were addressed by using regression trees. Essentially, each terminal 
node of the regression tree contributes one basis function to the RBF network, the centre and 
radius of which are determined by the position and size of the corresponding hyperrectangle. 
Thus the tree gives an initial estimate of the number, positions and sizes of all RBFs in the 
network. The nodes of the regression tree are used not to fix the RBF network, but to 
generate a set of RBFs from which the final network can be selected. The regression tree 
from which the RBFs are produced is also used to order selections such that certain candidate 
RBFs are allowed to enter the model before others. Thus, model complexity was not 
controlled in the phase of tree generation but in the phase of RBF selection. 
The exact procedure to derive a RBF network in conjunction with a regression tree is given 
by Orr (1999b), and can be summarised as follows. In the construction of the regression tree, 
nodes are split recursively until a node cannot be split without creating a child containing 
fewer samples than a given minimum, minmem, which is a parameter of the method. The 
resulting regression tree contains a root node (the initial node), some nonterminal nodes 
(having children) and some terminal nodes (having no children). Each node is associated with 
a hyperrectangle of input space having a centre c and size s defined as: 
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Subscript k denotes that size and centre are given in dimension k. S denotes the subset of the 
training set that is contained by the hyperrectangle. To translate a hyperrectangle into a 
Gaussian RBF, its centre c is used as the RBF centre c, and its size s scaled by a parameter 
scales is used as the RBF radius r. Parameter scales has the same value for all nodes and is 
another parameter of the method, in addition to minmem. Traversing the tree from the root to 
the smallest hyperrectangles at the terminal nodes, RBFs are considered for inclusion in the 
model using the Bayesian Information Criterion (BIC) as a selection criterion: 
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SSE is the training set sum-squared-error, p is the number of patterns in the training set (the 
number of model executions that the metamodel will be based on) and γ is the effective 
number of parameters in the model. Orr (1999b) states that BIC gave the best results of four 
possible model selection parameters. As an example, Fig. 1 illustrates the results of the RBF 
network compared to the original simulations with PCLake and the approximation by the 
regression tree metamodel. 
For each value of minmem a different tree is built, and each value of scales gives rise to a 
separate set of RBFs from which to select the network. The values of both minmem and 
scales can have an effect on the performance of the method. Orr (1996b) states that it pays 
to experiment with different combinations of trial values to try and find one which works 
well on a given data set. In this study, minmem values of 3, 4, and 5 were used, and scales 
values of 2, 3, 4, 5, 6, 7, and 8. The number of networks built by the method is equal to the 
product of minmem and scales (i.e. 21). The winning network is the one with the lowest 
value of BIC. 
 

2.3.3 Interpolation 
Interpolation refers to deriving the output value for a point in input space from the output 
values of directly neighbouring given points. The basic idea of data interpolation is 
straightforward and transparent. The distances between the data points should be small, 
however, to obtain good estimates, and therefore a large number of model executions has to 
be done before interpolation. In this study, the data were organised into a grid before 
interpolation. We considered that when the data points are organised into a grid, one may 
adjust the number of values per input dimension to the sensitivity of model output to the input 
variable concerned. In this way, the information taken from a fixed number of model 
executions may be maximised. We chose to use FAST analysis (Campolongo et al., 2000; 
Chan et al., 2000) to determine the model sensitivity to the input variables. FAST offers a 
sensitivity analysis method that is independent of any assumptions on the model structure. As 
a rule of thumb, FAST analysis used a minimum of 65 executions per factor. In this study, 
2000 executions were used in the FAST analysis. The FAST total sensitivity index is an 
accurate measure of the effect of a factor on the model output, taking into account all 
interaction effects involving that factor. The number of values per grid axis was taken 
proportional to the FAST total sensitivity index for the variable on the axis. The model 
PCLake was executed for the resulting grid of variable values. 
  

2.4 Criteria for the performance of the metamodels 
2.4.1 Accuracy 
Accuracy is the capability of the metamodel of predicting the response in the input space of 
interest. The goodness-of-fit obtained from the training data is not sufficient to assess the 
accuracy of newly predicted points. Therefore, in this study, accuracies were measured by 
using an independent set of 80,000 simulations by PCLake, the input variables of which were 
sampled by latin hypercube. Several metrics are used to express the goodness-of-fit of the 
metamodel; these are Rfit

2, the average residual, and some percentiles characterising the 
distribution of residuals. Rfit

2 is calculated as: 
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where yi,PCLake is the chlorophyll concentration calculated by PCLake in execution i, yi,metamodel 
is the chlorophyll concentration calculated by the metamodel in execution i, and y i,PCLake is 
the chlorophyll concentration calculated by PCLake, averaged over all 80,000 executions. 
Rfit

2 expresses how well the values calculated by PCLake and approached by the metamodel 
fit in a 1:1-relationship. It deviates from R2 calculated by linear regression through simulated 
and approached data, which expresses how well the data fit on a straight line, irrespective of 
whether this is an 1:1 straight line. 
In some metamodels the number of input variables was less than eight. The input variables 
not included in these metamodels were represented as fixed average values. Also these 
reduced metamodels were tested with the above set of 80,000 simulations. It should therefore 
be stressed that the effects of the variables were excluded from the metamodel, but not from 
the test set that the reduced metamodels was tested with. 
 

2.4.2 Efficiency 
The efficiency of the metamodel is expressed in both the time required for constructing the 
metamodel and for predicting the response for the set of 80,000 samples mentioned above. 
 

2.5 Software used 
The model PCLake was run in an ACSL Math 1.2 environment. Sampling and sensitivity 
analysis according to FAST were done with help of SimLab. SPlus was used to construct a 
regression tree. Matlab functions developed by Orr (1999b), in particular rbf_rt_1, were 
used to generate an RBF network in combination with a regression tree. Interpolation was 
done with the standard Matlab function for interpolation in multidimensional space, interpn. 
Interpn is suitable for data interpolation when inputs are distributed over input space 
according to a grid (table lookup). Both 'linear', 'cubic', 'spline' and 'nearest' 
were used as interpolation methods within function interpn. The practical procedures when 
constructing a regression tree with SPlus, an RBF network with Matlab, and performing 
interpolation with Matlab, function interpn are given in Appendix 1. For all methods, the 
number of executions needed for constructing the metamodel was limited to 100,000, i.e. 
about 10 days of calculations with PCLake. 
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3. Results and discussion 
Output values in the set that was used to test the metamodels ranged from 0.30 to 
538.11 mg m-3. Mean output value of the 80,000 executions was 69.22 mg m–3. The 
frequency distribution of the simulated values is shown in Figuur 2. Frequency was 
calculated as the fraction of output values per unit chlorophyll concentration (m3 mg–1). For 
practical reasons, in Figure 2, the X-axis was cut off at 200 mg m–3. 
 

Figure 2  Frequency distribution of the PCLake output in the 80,000 runs test set. 
 

3.1 Regression tree 
In order to base the regression tree and the interpolation on equal numbers of model 
executions, 78,336 model executions were used for the construction of the regression tree 
(see 3.3). The resulting metamodel gave an Rfit

2 of 0.884. A regression tree was also 
constructed using only five variables, i.e. the depth, the fetch, the water inflow, the 
phosphorus concentration, and the ratio between the nitrogen and phosphorus concentration. 
These variables were selected since they caused the greatest average difference between the 
chlorophyll values at their minimum and maximum values. Rfit

2 of this metamodel was 0.911. 
 

3.2 RBF networks 
By experience it was established that the most extended data set containing the eight input 
variables given in Table 1, that can be processed by Matlab function rbf_rt_1, contains 
5000 executions. When processing 6000 executions, the computer ran out of memory. 
According to the fit criterion produced by rbf_rt_1, the metamodel with minmem=3 and 
scales=3 gave the best fit to the training set. The resulting metamodel contains 393 centres. 
The metamodel was tested with the test set of 80,000 points. The value of Rfit

2 was 0.922. 
When processing the test set by the RBF network, it had to be split into two parts because of 
computer memory restrictions. All 21 metamodels generated by rbf_rt_1 , corresponding to 
the 21 combinations of minmem and scales, were tested with the independent test set. The 
metamodel selected by the fit criterion in MatLab (minmem=3 and scales=3), also appeared 
to be the best one when tested with the test set. 
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In addition, an RBF network containing five variables, viz. the depth, the fetch, the water 
inflow, the phosphorus concentration, and the ratio between the nitrogen and phosphorus 
concentration, was constructed. These factors were selected using the same criteria as with 
regression trees. The network was based on 7000 executions, which was found to be the 
upper limit because of the available computer memory. According to the fit criterion 
produced by rbf_rt_1, the metamodel with minmem=3 and scales=3 gave the best fit to the 
training set. Testing the metamodel with the test set of 80,000 points produced an Rfit

2 value 
of 0.935. 
 

3.3 Interpolation 
Results of the FAST analysis, that was used to assess the effects of the different variables on 
the output of PCLake, are shown in Table 2. 
 
Table 2 FAST first order and total order indices for the variables in the model. Output variable 

was the summer chlorophyll-A concentration after 20 years. 
The number of values for each variable in three grids: (a) based on FAST under the 
precondition that the number of values of each variable is ≥ 2, (b) based on FAST without 
restrictions; (c) using a more  intuitive re-adjustment of the values calculated with help of 
FAST. 

number of values in grid Variable FAST total order 
index (a) (b) (c) 

Fetch 0.142 3 4 7 
Depth 0.642 15 18 22 
Inflow of water 0.155 4 4 6 
Phosphorus concentration in 
inflowing water 

 
0.619 

 
14 

 
17 

 
16 

Ratio between nitrogen and 
phosphorus loading 

 
0.142 

 
3 

 
4 

 
6 

Fishing rate 0.013 2 1 1 
Concentration of inorganic matter 
in inflowing water 

 
0.052 

 
2 

 
1 

 
1 

Relative marsh area 0.136 3 4 1 
 
The total order indices were used to distribute the values of the variables at which the model 
is executed over the different axes. In calculating the number of values of the variables in the 
grid, the number of executions was determined at about 100,000. The numbers of values per 
axis were taken proportional to the FAST indices. In the first case, the distribution was 
calculated under the restriction that the number of values for each variable was ≥ 2 
(Table 2, (a)). In the second case, no restriction was applied (Table 2, (b)). The third 
distribution was a more intuitive re-adjustment of the numbers calculated on the basis of the 
FAST indices (Table 2, (c)). The actual resulting numbers of executions were 
3 × 15 × 4 × 14 × 3 × 2 × 2 × 3 = 90720, 4 × 18 × 4 × 17 × 4 × 1 × 1 × 4 = 78336, and 
7 × 22 × 6 × 16 × 6 × 1 × 1 × 1 = 88,704. Distributions of values over the axes were such that 
the two extremes of the axis were included and values in between were uniformly spaced. For 
the variables that had only one value, the value in the middle of the range was chosen. The 
fact that some variables were represented by the mean value of their range only, effectively 
reduced the number of variables in the metamodel compared to the original model. 
The test set of 80,000 points to be estimated by interpn had to be processed in two parts 
because of computer memory restrictions. Both 'linear', 'cubic' and 'nearest' were 
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used as interpolation methods. With the available computer memory, method 'spline' could 
not be used with a grid of this size. 
Computational costs of the interpolation were 1.5 minutes, 10 minutes, and 2 seconds for 
methods 'linear', 'cubic' and 'nearest', respectively. Values of Rfit

2 in grid (a) were 
0.885 for method 'linear', and 0.766 for method 'nearest'. In this grid, method cubic 
could not be used in this grid since it requires at least 3 values per axis. Values of Rfit

2 in 
grid (b) were 0.933, 0.929, and 0.827, for the three methods, respectively. In both cases, 
method 'linear' gave the best results. In grid (c), only interpn method 'linear' was 
used. The resulting value of Rfit

2 was 0.965. 
 

3.4 Comparison of the metamodels 
3.4.1 Accuracy 
Accuracies of the metamodels containing all eight input variables are summarised in Table 3. 
Absolute values of the residuals were taken before percentiles were calculated. Interpolation 
was done with option 'linear' of the interpolation function interpn. 
 
Table 3 Accuracies of the different metamodels, applied to the independent test set of 80,000 

executions. The numbers between brackets in the column ‘technique’  indicate the number 
of variables included in the metamodel. 

Technique Rfit
2 mean 

residual 
Percentiles of the distribution of residuals 

   0.5 0.9 0.95 0.99 0.999 
Regression tree (8) 0.884 10.03 6.32 21.64 31.69 66.00 130.69 
RBF network (8) 0.922 8.29 5.26 17.57 25.95 54.34 114.99 
Interpolation (8) 0.885 8.31 4.02 18.39 29.97 70.95 156.31 
 
According to all criteria, the RBF network was the superior metamodel. The numbers of 
executions that the metamodels were based on, were 78,336 for the regression tree, 5,000 for 
the RBF network, and 90,720 for the interpolation. This indicates that the RBF network 
makes very efficient use of the available information. A difference between the models is that 
the RBF network may generate negative values for the chlorophyll concentration, whereas 
negative output values do not occur when using regression trees and interpolation. If desired, 
generation of negative values by RBF networks may be avoided by transformation (e.g. log-
transformation) of the dependent variable. 
Accuracies of the metamodels based on less than eight input variables, are given in Table 4. 
Note that testing the metamodels did involve all eight variables. Regression tree and RBF 
network were constructed using five variables. Interpolation was done with the grids given in 
Table 2(b) and 2(c), implying that both six and five variables were included in the 
metamodel. 
 
Table 4 Accuracies of different reduced metamodels, applied to the independent test set of 80,000 

executions. The numbers between brackets in the column ‘technique’ indicate the number 
of input variables included in the metamodel. 

Technique Rfit
2 mean 

residual 
Percentiles of the distribution of residuals 

   0.5 0.9 0.95 0.99 0.999 
Regression tree (5) 0.911 5.92 2.10 13.78 24.02 63.29 157.19 
RBF network (5) 0.935 7.02 4.12 14.96 22.71 50.80 115.93 
Interpolation (6) 0.933 6.37 2.97 14.26 21.75 55.49 119.18 
Interpolation (5) 0.965 4.05 1.55 9.38 14.82 39.12 104.43 
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At a fixed number of model executions to construct a metamodel with, exclusion of less 
influential variables makes that the information on more influential variables can be increased 
on the expense of information on less influential factors. In the case of RBF networks, the 
number of model executions used to construct the network, that is limited by computer 
memory, can be increased. In both cases, the net effect is that the set of model executions 
used for metamodelling contains more information on the response of the dependent variable. 
This is reflected in the accuracies in Table 4, that are higher than those in Table 3, all across 
the line. Disadvantage of the metamodels in Table 4 is that variation in the variables that are 
excluded has no effect on the model result any more. 
The results of interpolation in a 7 × 22 × 6 × 16 × 6 × 1 × 1 × 1 grid indicated that the grids 
that were constructed directly on the basis of FAST total order indices did not render optimal 
results in the interpolation. More than that, interpolation in a 7 × 22 × 6 × 16 × 6 × 1 × 1 × 1 
grid was superior to all other metamodelling techniques used. The results of this metamodel 
are shown in Figure 3. 

Figure 3  Output values of the best fitting metamodel as a function of PCLake output. 
 
The fact that this metamodel was not made according to a prescribed algorithm implies that 
this is most probably not the optimal metamodel. When constructing a grid for interpolation 
with interpn, the importance of each variable can be expressed on a continuous scale, as the 
number of values of the variable in the grid. When constructing a regression tree or an RBF 
network, one can only choose for either including a variable or not. The question that remains 
after this study is how to devise a formal procedure to select the variables that lead to an 
optimal metamodel. 
The numbers of executions that the metamodels were based on, were 78,336 for the 
regression tree, 7,000 for the RBF network, and 78,336 and 88,704 for both interpolation 
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metamodels, respectively. Again, this indicates that the RBF network makes very efficient 
use of the available information. 
 

3.4.2 Efficiency 
Efficiencies of the different metamodels are summarised in Table 5. 
 
Table 5 Efficiencies of different metamodels, applied to the independent test set of 80,000 

executions. The numbers between brackets in the column ‘technique’ indicate the number 
of input variables included in the metamodel. 

Technique Time needed to run the 
necessary executions 

(h) 

Time needed to 
construct the 

metamodel itself (h) 

Time needed for 
80,000 new predictions 

(h) 
Regression tree (8) 186.0 0.05 0.02 
 (5) 218.2 0.05 0.02 
RBF network (8) 12.0 152.6 0.04 
 (5) 17.5 600 0.01 
Interpolation (8) 229.4 0.02 0.02 
 (6) 198.1 0.02 0.02 
 (5) 208.7 0.02 0.02 
 
In all metamodels, the time needed to generate a result was reduced from an average duration 
of 9 seconds to 1 – 2 milliseconds. The overall time to develop the metamodel (i.e., running 
the necessary executions and constructing the metamodel itself) ranged from 7 – 9.5 days, 
exept for the RBF network with 5 variables and 7000 executions, which took about 25 days te 
be constructed. It may be more practical to reduce the number of executions used for this 
metamodel. This will probably slightly reduce the fit of the metamodel. In the metamodels 
using MatLab, i.e. RBF networks and interpolation, the test set of 80,000 predictions had to 
processed in two parts because of computer memory restrictions. 
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4. Conclusions 
Three methods (regression tree, RBF network, and interpolation) were used to develop a 
metamodel for the calculation of the chlorophyll concentration by PCLake. The best meta-
model containing eight variables was the RBF network. R2 of the RBF network, using an 
independent test set, was 0.922. Constructing the metamodel on the basis of the five most 
influential input variables only (the depth, the fetch, the water inflow, the phosphorus 
concentration, and the ratio between the nitrogen and phosphorus concentration), improved 
the performance of the metamodel. The best metamodel containing five variables was that 
based on interpolation, giving an R2 of 0.965, using the same independent test set, (i.e. a set 
that contains the effects of all eight input variables on the output). The metamodel reduced 
computational cost from 9 seconds to 1-2 milliseconds. The metamodel may be used as a 
substitute for PCLake in scenario studies. No formal procedure was found that inevitably 
leads to the optimal conceivable metamodel. This implies that the R2 of 0.965 might be 
further improved, and that construction of future versions of the metamodel (e.g. for another 
output value of PCLake) may again involve some trial and error. 
 
The practical procedures when constructing a regression tree with SPlus, an RBF network 
with Matlab, and performing interpolation with Matlab, function interpn are given  
(Appendix 1). These procedures can also be applied to develop similar metamodels. 
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Appendix 1 Procedures and scripts 
In Appendix 1, procedures are given to construct a new version of the metamodel according 
to each of the three techniques. 
 
1.1 Math script 
The following Math script was used to execute PClake: 
 
CQEVAVE=0.0 
CQEVVAR=0.0 
IALG=8 
NSTP=200 
!! set ECSITG = .T. !errors based on current value of state 
!! set TJNITG = 1.0D33 ! no messages on Jacobian nonlinearities 
!! output/clear   !No screen output during run 
!! set WESITG = .F.   !No error summary after each run 
!! set WEDITG = .F.   !No integration messages during run 
 
!!prepare time 
!!prepare ochla 
!!prepare cpload 
!!prepare endyr 
 
% The last year of the simulation is called ENDYR. 
endyr = ENDYR 
ENDTIME = 365*ENDYR 
 
CPBACKLOAD = 0 
CNBACKLOAD = 0 
SaveInterval = 1000; 
 
% Inputdata are read from file X_PCLake.txt.  
tablefilename = 'X_PCLake.txt' 
readtable 
parset = values 
% nsamp is the number of executions 
nsamp = size(parset,1) 
 
for isamp = 1:nsamp 
 
  CFETCH = parset(isamp,2) 
 
  SDEPTHW0 = parset(isamp,3) 
 
% The following parameters characterise the effects of wind on the 
processes in PCLake. 
  CFUNTAUSETIM = ... 
  exp(-exp((530.729/CFETCH+1.77903)+(-2694.65/CFETCH-0.412493)*SDEPTHW0)) 
  CFUNTAUSETOM = CFUNTAUSETIM 
  CFUNTAURESUS = ... 
  123.044 / (1+0.47991*exp((13.0811+0.0017092*CFETCH- 
  0.280058*sqrt(CFETCH))*SDEPTHW0)) 
  KRESUSPHYTREF = 0.721617 * (1- exp (-0.378555*CFUNTAURESUS)) 
 
  CQIN = parset(isamp,4) 
 
  COPIN = parset(isamp,5) 
  CPLOAD = COPIN * CQIN 
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  rNP = parset(isamp,6) 
  CNLOAD = rNP*CPLOAD 
 
  KHARVFISHSUM = parset(isamp,7) 
  KHARVFISHWIN = KHARVFISHSUM 
  KHARVPISCSUM = KHARVFISHSUM 
  KHARVPISCWIN = KHARVFISHSUM 
 
  CDIMIN = parset(isamp,8) 
 
  FMARSH = parset(isamp,9) 
 
  !!spare; start; spare 
 
  ochlasum20 = mean(_ochla(365*(endyr-1)+91:365*(endyr-1)+273)) 
 
  result(isamp,1)=ochlasum20 
 
% Save results every SaveInterval (=1000) runs: 
 
  if round(isamp/SaveInterval) == isamp/SaveInterval | isamp == nsamp 
     save result @file='y_PCLake.txt' @format=ascii; 
  end 
 
end 
 
 
 
1.2 Regression tree 
SPlus Regression Tree 
Importing data 
Import file containing X-variables and corresponding y-variable, e.g. rtdata.txt. In this 
study, the size of the file was 78,336 × 9. In SPlus, the Object is called rtdata. 
Import file with X-values for which calculations by the metamodel should be made, e.g. 
rt_test_X.txt. In this study, the size of the test file was 80,000 × 8. In SPlus, the Object is 
called rt.test.X. 
 
Constructing the metamodel 
From the main menu choose Statistics > Tree > Tree Models. 
Tab ‘Model’: 
In the window ‘Data’, fill in ‘rtdata’ under Data Set. 
In the window ‘Fitting Options’, fill in: 

Min No of Obs Before Split 1 
Min Node Size 2 
Min Node Deviance 0 

In the window ‘Save Model Object’, fill in ‘rtmodel’. 
In the window ‘Variables’, fill in: 

Dependent ochlasum20 

Independent select all X-variables. 
Choose ‘OK’. 
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Predictions with the metamodel 
In Object Explorer, click on ‘rtmodel’ with the right mouse button. 
Choose ‘Predict’. 
In ‘New Data’, fill in ‘rt.test.X’. 
In ‘Save As’, fill in ‘rt.pred’. 
 
1.3 RBF network 
Constructing an RBF network with MatLab functions developed by Orr, and using the 
network to make calculations are described in detail by Orr (1999b). The Matlab scripts can 
be downloaded from www.anc.ed.ac.uk/~mjo/software/rbf.zip and 
www.anc.ed.ac.uk/~mjo/software/rbf2.zip. 
A short summary of the procedure that was used is given here. 
 
Construction of the RBF network 
Import files with input data, e.g. rbfdata_X.txt (size 5000 × 8), and corresponding output 
data, e.g. rbfdata_y.txt (size 5000 × 1). 
 
Xt = rbfdata_X; 
y = rbfdata_y; 
X = Xt’; 
conf.minmem = 3 
conf.scales = 2 
[C, R, w, info] = rbf_rt_1(X, y, conf); 
info.dmc; 
infodmc = ans; 
info.rbf.gam; 
inforbfgam = ans; 
info.rbf.err; 
inforbferr = ans; 
save rbfrt_3_2 C R w infodmc inforbfgam inforbferr; 

The calculation may be repeated for other values of conf.minmem and conf.scales. 
 
Predictions with the RBF network 
Open workspace rbfrt_3_2. 
Import file with points to be predicted, e.g. rbf_test_X.txt (size 80,000 × 8). A file of this 
size should be processed in two parts. Here, the predictions are exported to drive c:\. 
 
info.dmc = infodmc 
Xpred = rbf_test_X(1:40000,:); 
Xpredt = Xpred'; 
Ht = rbf_dm(Xpredt,C,R,info.dmc); 
yt = Ht * w; 
save('c:\rbfrt_ytest_3_2a.txt','yt','-ASCII') 
Xpred = rbf_test_X(40001:80000,:); 
Xpredt = Xpred'; 
Ht = rbf_dm(Xpredt,C,R,info.dmc); 
yt = Ht * w; 
save('c:\rbfrt_ytest_3_2b.txt','yt','-ASCII') 
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1.4 Interpolation 
Matlab interpn 
A. Import data 
1. Import vector with outputs PCLake 

e.g. pclake_y.txt 
2. Import file with inputs for which output should be estimated by interpolation 

e.g. interpn_test_X.txt 
 
B. Command window 
1. Rename output vector to y. 

e.g. y = pclake_y; 
The number of elements of y is denoted ay. 
In the example, ay = 78336. 

2. Describe the grid of input values that were used to calculate y. Use function ndgrid. 
[X1 X2 X3 X4 … Xx] = ndgrid(X1min:X1step:X1max, X2min:X2step:X2max, …, 
Xxmin:Xxstep:Xxmax); 

Min denotes the minimum value of the variable, max denotes the maximum value of 
the variable, step denotes the step size from min to max. The number of X-variables 
is denoted x. The numbers of values per axis are a1, a2, a3, …, ax, respectively, for 
variables X1, X2, X3, … Xx. 
e.g. 
[X1 X2 X3 X4 X5 X6] = 
ndgrid(100:2466.667:7500.001,0.5:0.32353:6.00001,8:24:80,0.00001:0.00
0030625:0.0005,5:6.67:25.01,0:0.0667:0.2001); 

In the example, the numbers of X-variables are a1=4, a2=18, a3=4, a4=17, a5=4, a6=4. 
3. Rearrange vector y into matrix B. A serves as an intermediate. 

for i=1:(ay/a1),A=y(a1*(i-1)+1:a1*i,:);,B(i,1:a1)=A';,end 

e.g. 
for i=1:19584, A=y(4*(i-1)+1:4*i,:);,B(i,1:4)=A';,end 

4. Rearrange matrix B into the multidimensional matrix V. This is done by a nested for-
loop with x-2 levels. In the x-2 for-loops, indices i3, i4, i5, …, i(x) are used. The 
symbols for the indices are chosen in order to obtain a logical structure of the 
statement. 
for i(x)=1:ax, for i(x-1)=1:ax-1, for i(x-2)=1:ax-2, …, for i4=1:a4, for 
i3=1:a3, V(:,:,i3,i4, …,i(x-2),i(x-1),i(x)) = B(a2*i3 + (a2*a3)*i4 + … 
+ (a2*a3*a4* … *ax-2)*i(x-1) + (a2*a3*a4* … ax-2*ax-1)*i(x) – (a2 + (a2*a3) + 
(a2*a3*a4) + … + (a2*a3*a4* … *ax-1) –1): a2*i3 + (a2*a3)*i4 + … + 
(a2*a3*a4* … *ax-2)*i(x-1) + (a2*a3*a4* … ax-2*ax-1)*i(x) – ((a2*a3) + 
(a2*a3*a4) + … + (a2*a3*a4* … *ax-1),:)’;, end, end, …, end 
e.g. 
for i6=1:4, for i5=1:4, for i4=1:17, for i3=1:4, V(:,:,i3,i4,i5,i6)= 
B(18*i3+(18*4)*i4+(18*4*17)*i5+(18*4*17*4)*i6-
(18+18*4+18*4*17+18*4*17*4-1):18*i3+72*i4+1224*i5+4896*i6-
(18*4+18*4*17+18*4*17*4),:)';, end, end, end, end  
which evaluates to 
for i6=1:4, for i5=1:4, for i4=1:17, for i3=1:4, V(:,:,i3,i4,i5,i6)= 
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B(18*i3+72*i4+1224*i5+4896*i6-6209:18*i3+72*i4+1224*i5+4896*i6-
6192,:)';, end, end, end, end 

5. Rename points to be estimated to matrix Y. 
e.g. Y = interpn_test_X; 
Each row contains one point to be estimated, that is one value for each of the x 
variables. 

6. Extract vectors Y1, Y2, … Yx from matrix Y. Each vector contains the values for one 
variable. Together, the nth elements of the vectors constitute one point to be estimated. 
e.g. 
Y1 = Y(:,1); 
Y2 = Y(:,2); 
Y3 = Y(:,3); 
Y4 = Y(:,4); 
Y5 = Y(:,5); 
Y6 = Y(:,6); 

7. Interpolate. Estimated values are saved into vector VI. 
VI = interpn(X1,X2,X3, … ,Xx,V,Y1,Y2,Y3, … ,Yx,method); 

e.g. 
VI = interpn(X1,X2,X3,X4,X5,X6,V,Y1,Y2,Y3,Y4,Y5,Y6,'linear'); 

 
FAST analysis was used for sensitivity analysis of the variables in the model. 
SimLab FAST analysis 
 
A. Sampling 
A short overview is given here. Sampling is described in detail in the SimLab 1.1 Reference 
Manual. 
Statistical Pre Processor 
New Sample Generation 
Configure 
Select Input Factors 
The first time when sampling from a set of variables, choose Create New. In this study, 
uniform distributions were used for the input variables. Minimum and maximum values were 
set, according to Table 1. 
Once the list is complete: Accept factors 
The list of variables can be saved as a file with extension .fac. 
Next time the same set of factors is used to take a sample from, the .fac file should be 
opened first. 
Select Method 

Choose the settings that are relevant. 
Give a name for the output file, the .sam file. 
Generate generates the sample. 
 
B. Sensitivity analysis according to FAST 
1. Statistical Pre Processor 

Saved samples: .sam file: Open 
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2. Model Execution 
Configure (Monte Carlo) 
Select Model 

deselect Execute external model 
Output file: .txt: Save (replace if you are asked to do so) 
OK 

Start (Monte Carlo) 
3. Statistical Post Processor 

Analyse (UA/SA) 
OUTPUT VARIABLES 
select the output variable(s), here ochlasum20 
Add 

New variable 
SA 

Tabulated values: values of the first and total order indices 
Chart 
Visualise 

Factors 
select all available factors (►) 
OK 

Pie chart was made 
 
 

  

 


