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Abstract

It is well-known that a large part of the year-to–year variation in annual distribution of daily
concentrations of air pollutants is due to fluctuations in the frequency and severity of
meteorological conditions. This variability makes it difficult to estimate the effectiveness of
emission control strategies.

In this report we have demonstrated how a series of binary decision rules, known as
Classification And Regression Trees (CART), can be used to calculate pollution
concentrations that are standardized to levels expected to occur under a fixed (reference) set
of meteorological conditions. Such meteo-corrected concentration measures can then be used
to identify ‘underlying’ air quality trends resulting from changes in emissions that may
otherwise be difficult to distinguish due to the interfering effects of unusual weather patterns.

The examples here concern air pollution data (daily concentrations of SO2 and PM10).
However, the methodology could very well be applied to water and soil applications.
Classification trees, where the response variable is categorical, have important applications
in the field of public health. Furthermore, Regression Trees, which have a continuous
response variable, are very well suited for situations where physically oriented models
explain (part of) the variability in the response variable. Here, CART analysis and physically
oriented models are not exclusive but complementary tools.
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Samenvatting

Dag-op-dag-variaties in meteorologische condities zijn een belangrijke oorzaak van variaties
in  het concentratieverloop van luchtveronreinigende stoffen. Deze aan meteorologie
gekoppelde variaties  werken ook door in jaargemiddelde concentraties. Daarom is het
moeilijk om te beoordelen in hoeverre jaargemiddelde patronen van luchtverontreinigende
componenten beïnvloed worden door emissiereducties.  Zo’n beoordeling is zeer beleids-
relevant omdat emissiereducties over het algemeen gepaard gaan met hoge kosten. Daarom
zal er, om een een maatschapppelijke draagvlak te garanderen, een relatie gelegd moeten
worden tussen trends in antropogene emissies enerzijds en trends in concentraties anderzijds.

In dit rapport tonen we aan hoe met behulp van een reeks binaire beslisregels, bekend staand
onder de naam Classificatie- en Regressiebomen (Eng: CART), gemeten concentraties
getransformeerd kunnen worden naar concentraties die er zouden zijn geweest onder
standaard meteorologische condities. Deze meteo-gecorrigeerde concentraties kunnen
vervolgens gebruikt worden om trends in luchtkwaliteit beter te identificeren.

CART-analyse en meer specifiek Regressieboom-analyse, heeft een aantal voordelen boven
andere statistische technieken. In de eerste plaats is de methode parametervrij. Dat wil zeggen
dat er geen aannames hoeven te worden gedaan over onderliggende kansverdelingen. In de
tweede plaats mogen de relaties tussen een responsvariabele (concentratie van stof X) en de
predictors (variabelen zoals temperatuur, neerslag, windrichting of windsnelheid) in hoge
mate niet-lineair zijn. In de derde plaats zijn resultaten van een CART-analyse relatief
eenvoudig te interpreteren.

Hoewel de voorbeelden in dit rapport gericht zijn op luchtverontreiniging, is de methode zeer
geschikt voor andere milieuvelden zoals water- en bodemverontreiniging. Regressiebomen,
waar de responsvariabele continu is, zijn van ook van belang voor situaties waar fysisch-
georiënteerde modellen een deel van de variabiliteit van de responsvariabele beschrijven.
Regressieboom-analyse is complementair aan deze fysische modellen. Classificatiebomen,
waar de responsevariabele nominaal is, hebben grote relevantie voor het onderzoeksgebied
van de Volksgezondheid.

We hebben verfijningen ontwikkeld voor de Regressieboom-benadering zoals beschreven
door Dekkers en Noordijk (1997). Deze verfijningen omvatten: (i) controle van de data op
uitbijters, ontbrekende waarnemingen en hoge correlaties tussen de predictors, (ii) controle
op de responsvariabele of transformaties nodig zijn, (iii)   cross-validatie van de geschatte
Regressieboom, en (iv) evaluatie van de voorspelkracht van een Regressieboom in
vergelijking met alternatieve voorspelmethoden.

Als een case study hebben we de methodologie toegepast op metingen van fijnstof  (PM10).
We hebben 9 regionale stations geanalyseerd met metingen over de periode 1992-2001. De
resultaten laten zien dat:
• regressieboom-modellen die gebaseerd zijn op maandgemiddelde concentraties, beter

voldoen dan modellen op daggemiddelde waarden;
• langjarige trends in concentraties niet beïnvloed worden door variaties in meteorologie;
• concentraties een dalende tendens vertonen, net als emissies. Na correctie voor

natuurlijke emissiebronnen (zeezout, opwaaiend stof en de achtergrondconcentratie van
het Noordelijk halfrond) blijken emissies sterker te dalen dan  concentraties.
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Summary

It is well-known that part of the year-to–year variation in annual distribution of daily
concentrations of air pollution in ambient air is due to fluctuations in the frequency and
severity of meteorological conditions. This variability makes it difficult to estimate the
effectiveness of emission control strategies.

In this report we have demonstrated how a series of binary decision rules, known as
Classification And Regression Trees (CART), can be used to calculate pollution
concentrations that are standardized to levels that would be expected to occur under a fixed
(reference) set of meteorological conditions. Such adjusted concentration measures can then
be used to identify ‘underlying’ air quality trends resulting from changes in emissions that
may otherwise be difficult to distinguish due to the interfering effects of unusual weather
patterns.

CART analysis, and more specifically Regression Tree analysis, has a number of advantages
over other classification methods, such as Multiple Regression. First, it is inherently non-
parametric. In other words, no assumptions have to be made a priori regarding the underlying
distribution of values of the response variable or predictor variables. Second, the relationship
between the response variable (concentration of a pollutant) and predictors (meteorological
variables) may be highly non-linear. Third, the estimation results of a CART analysis are
relatively easy to interpret.

Although the examples given here concern air pollution, the methodology could very well be
used for water and soil applications. Regression Trees, having a continuous response
variable, are very well suited to situations where physically oriented models explain (part of)
the variability of the response variable. Here, Regression Trees and physically oriented
models are not exclusive but complementary tools. Furthermore, Classification Trees, where
the response variable is categorical, have important applications in the field of Public Health.

We have refined the methodology of Dekkers and Noordijk (1997) for Regression Trees.
Refinements comprise (i) checks on the data for outliers, missing values and multi-
collinearity among the predictors, (ii) checks for transformation of concentrations prior to the
estimation of a Regression Tree, (iii) cross-validation of the final optimal tree and (iv)
evaluation of the predictive power of the final tree in relation to alternative (rival) models.

The Regression Tree methodology, applied as a case study to nine regional stations of PM10
in the Netherlands, has yielded the following results:
• RT models based on monthly concentrations outperformed those based on daily data.

Apparently, monthly averaged meteorology is more influenced by large-scale
meteorology in Europe, governing periods with extreme concentrations;

• Long-term trends in  PM10 concentrations have not been not influenced by meteorological
variability.

• Regional concentration trends show large similarities to trends in emissions. If we correct
concentrations for natural emission sources (sea salt, wind-blown dust and northern
hemisphere background concentrations), emissions decrease faster than concentrations.
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1. Introduction

1.1 Why statistical modelling?

A wide diversity of mathematical models is applied within the RIVM Office for
Environmental Assessment (MNP in Dutch). These models are based on physical, chemical,
meteorological and biological relationships. Reality is approximated as well as possible in
these models. What ‘as well as possible’ means, can be verified by environmental
measurements.

We will denote the model-based approach here as ‘white box modelling’. In many cases
white box modelling will give a deterministic approach to reality. As an example we can cite
the OPS model (Jaarsveld, 1995) by which the dispersion and deposition of a number of air
pollution components are modelled as a function of emissions and meteorology.

Contrary to white box modelling we also have so-called ‘black box modelling’. With this
second approach we mean the modelling of measurements on the basis of statistical
principles. A measurement series is seen as a deterministic signal and a stochastic residual
signal, the ‘noise’. A series of measurements can therefore be viewed as a possible
realization of reality. Some slightly different outcomes would have been equally likely. We
will denote these series as ‘time series’.

Within the statistical approach, relationships (or associations) are estimated by calculating
correlation. Correlation points to the similarity in patterns, but does not prove causality.
Therefore, we use the term ‘black box’. Examples of black box modelling are illustrated in
Multiple Regression models, ARIMA models or methods based on the Regression Tree,
described in this report.

The mixture of white box and black box modelling is called grey box modelling. If a physical
model only partly describes reality, we can describe the ‘difference’ between white box model
predictions and reality (the measurements) by statistical modelling.

An example of grey box modelling is the modelling of PM10-concentrations in the
Netherlands by the OPS-model. The OPS-model describes the anthropogenic contribution to
measured PM10 concentrations. However, by doing so, only half the concentration variations
are explained. Research has shown that the ‘rest’ is  largely explained by the share  of natural
sources (Visser et al., 2001). From this moment, we could describe and predict the difference
between measurements and OPS-predictions statistically, using such geostatistical techniques
as Universal Kriging.

In the absence of a physical model, it is clear that statistical models can play an important
role in finding relevant relations. But even with a physical description of our environmental
reality, statistical modelling can be of importance. Statistical inferences are pre-eminently
suited as a diagnostic tool for unraveling and explaining differences between measurements
and the predictions of physically oriented models. Three examples follow:
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1) The correction of environmental measurements for meteorological conditions.
Dekkers and Noordijk (1997) describe a generic method based on Regression Trees
by which the time series of air pollution components (PM10, SO2, NOx, O3, and black
smoke) is corrected for meteorological conditions. Such a correction is of great
importance for policy-makers because after correction one can make inferences on the
influence of emission reductions on the actual ambient concentrations with much
more certainty.

Statistical techniques such as Regression Tree analysis or Multiple Regression yield insights,
which may be defined later in terms of physical relationships. An example is given in Chapter
5 for the time series of PM10 concentrations. It appears that months with extreme droughts
and cold periods correspond to months with very high PM10 concentrations. This sort of
relationship has not been taken into account in RIVM models such as OPS or EUROS, but
could be formulated into a physical framework and added to these models.

2) A second example is found in the field of forecasting. For components such as PM10
and O3 RIVM produces smog forecasts on television (Teletekst) 1 and 2 days in
advance. Simple statistical models, such as the autoregressive model with two
parameters, have often been found to outperform forecasts of complex white models.
Here, forecasts of black and white models could be evaluated on a test set, where the
best method is declared the winner. Or one might choose to combine forecasts of both
models (Makridakis et al., 1982).

3) A third example of great importance to the MNP, is the sensitivity analysis of
complex computational-intensive models (Saltelli et al., 2000). One method in this
field is to find the sensitivity of a certain output variable, y, to variations in the input
variables, x = (x1, x2, …, to xm). Which xi has the largest impact and which the
lowest? If the computational time of one model run is in the order of hours or even
days, this question is not trivial. Now, if we calculate y for a limited number of input
combinations x, we can estimate a Regression Tree model or a Multiple Regression
model between these sets (y,x). Once having estimated a black box model, one can
easily deduce an ordering in importance of the various input variables.

Such an exercise has been performed for the RIVM model PcDitch, consisting of 100
response variables and a set of 200 predictors. Screening the 200 predictors by Regression
Tree analysis yielded a set of 20 predictors governing specific response variables.



RIVM report 722601 007 page 11 of 73

Physically oriented models and statistical models such as Regression Trees, are not rivals but
complementary tools in explaining what we know and what we don’t know about our data
(Photo: H. Visser).
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1.2 The need for meteo corrections

The analysis of a series of measurements is generally done to show trends in concentrations
that are influenced by human activities. The point is to clarify how society influences the
ambient air pollution concentrations. On the one hand, the ongoing economic growth leads to
more production and emissions, while, on the other, environmental abatement policies and
the abatement of emissions leads to mitigation of concentrations. A long-term  time series of
measurements may give us insight into the influence of the economy and environmental
policy.

A third influence on the ambient concentrations is that of the meteorology. The influence of
the weather is not constant in time. For example, taking particulate matter (PM) and SO2, we
know that a cold winter in the Netherlands will yield higher average concentrations. These
higher PM concentrations are partly the result of more transport from abroad, as sub-zero
temperatures are usually accompanied by a continental air flow that is generally more
polluted than air masses from the Atlantic Ocean. During a period of frost the general
dispersion conditions are such that inversions occur more often. Furthermore, emissions tend
to be higher during these periods as heating of homes consumes more energy and cold starts
of cars produce more pollution. During a long cold spell high wind speeds may also re-
suspend airborne crustal material from the barren and dry fields. A year with more rain than
usual will lead to lower concentrations of PM, mainly because of either rainout or washout,
and to a lesser extent because it is harder for crustal material to become re-suspended when
soils are moist.

In this report we will demonstrate how a series of binary decision rules, known as
Classification And Regresion Trees (CART), can be used to calculate pollution
concentrations that are standardized to levels that would be expected to occur under a fixed
(reference) set of meteorological conditions. Such meteo-corrected concentration measures
can then be used to identify ‘underlying’ air quality trends resulting from changes in
emissions that may otherwise be difficult to distinguish due to the interfering effects of
unusual weather patterns.

1.3 Regression Tree analysis

A method has been developed at the RIVM to analyse the influence of meteorology on the
trends in air pollution (Dekkers and Noordijk, 1997). This method uses the ambient air
pollution concentrations in the Netherlands in combination with daily-averaged
meteorological values. The meteorological factors influencing concentrations are divided into
different classes by way of Regression Trees (Breiman et al., 1984). Regression Trees
comprise part of the so-called Classification and Regression Trees (CART) methodology.
The difference between Classification Trees and Regression Trees is that the response
variable is categorical in Classification Trees and continuous in Regression Trees.

Regression Tree analysis (RTA) is a statistical technique that divides the set of measurements
into two sub-sets on the basis of  meteorological criteria. The criterion for the division of the
sub-sets is the minimization of the variance of the two sub-sets. After this first step in the
analysis, one of the sub-sets is itself again divided into two new sub-sets, with again the
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criterion of minimization of variance. Eventually, this leads to a ‘tree’ of classes describing
the influence of meteorology on the concentrations.

Once we have generated a tree, we want to check if all the nodes in the tree are needed or if
we should prune the tree. The rationale for pruning the tree is that we want to have a model
for our data that is as parsimonious as possible, while keeping certain desirable
characteristics in tact (such as the predictive power of the tree, see below).

The final nodes of the tree are called ‘leaves’. By averaging all concentrations on days that
correspond to  that specific leaf we get an RT prediction for days that fall in the particular
meteo class. It should be noted that the term ‘predictions’ is used in the common statistical
sense, i.e. we may predict both values within the time series available and predict the future
(forecasting).

The ‘predictive power’ of the tree is found by calculating the mean squared error of the
prediction errors. The prediction error stands for the difference between the actual
concentration on a specific day and the corresponding leaf prediction (the average value of all
concentrations of falling in that leaf).

Once a suitable tree has been estimated, we want to correct annual averaged concentrations or
annual percentiles for meteorological conditions. Basically, there are two approaches. The
first approach has been proposed by Stoeckenius (1991). For every year the frequency of
occurrence of a meteo class is determined, the frequency of occurrence determines the actual
value of the correction factor. As an example, when the meteo class of tropical days normally
occurs three times a year and in a specific year there are six of these days, the calculation of
these tropical days in the yearly average is less than average and the correction factor
becomes 0.5. However, when by chance a certain meteo class does not occur, an estimate is
made of the expected concentrations by using concentrations from other years in that specific
meteo class. We will describe an expanded version of this procedure in more detail in
Noordijk and Visser (in prep.).

A second approach is to estimate the mean concentration µy for all concentrations yt . If we
denote the predicted concentration at time t as ŷt, then we define the particular concentrations
due to meteorological conditions as the difference between  ŷt  and µy. Finally, the meteo-
corrected concentration on day  t is ycorr,t= yt – (ŷt – µy) . Now, annual averaged
concentrations or percentiles are simply calculated on the corrected daily data ycorr,t. In this
document we will apply this correction approach, while in Noordijk and Visser (in prep.) we
will evaluate both meteo-correction methods.

CART analysis, and more specifically Regression Tree analysis, has been applied in many
fields. For references see Ripley (1996) and Venables and Ripley (1997). Many references
can by found via search path CART   ‘Regression Tree*’. However, Regression Tree analysis
has not been applied as frequently in air pollution research. Two references on application to
ozone data are Stoeckenius (1991) and Gardner and Dorling (2000). In the latter article
Regression Tree analysis, Linear Regression and Multilayer Perceptron Neural Networks are
compared using hourly surface ozone concentrations.
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1.4 Refinements

We apply Regression Tree analysis to time series of air pollutants. By doing so, we have to
ensure that our final tree model:
• fits the data well;
• is physically plausible;
• is able to withstand a comparison to alternative (rival) models.
Harvey (1989, pages 13-14) summarizes the criteria for a good model as proposed in the
econometric literature. These criteria equally hold for environmental time-series models and,
more specifically, for Regression Tree models.

The following six criteria from Harvey (1989) represent an elaboration of the three points
above:
(a) Parsimony. A parsimonious model is one that contains a relatively small number of

parameters. Other things being equal, a simpler model is preferred to a complicated
one. In general, there can be considerable advantages in starting with a general model
and then simplifying it on the basis of statistical tests.

(b) Data coherence. Diagnostic checks are performed to see if the model is consistent
with the data. The essential point is that the model should provide a good fit to the
data and the residual, be relatively small, and approximately random.

(c) Consistency with prior knowledge. The size and magnitude of parameters in the
model should be consistent with prior information. And the same should hold for the
classification rules from a specific Regression Tree. This information should relate to
a physical, chemical or meteorological context.

(d) Data admissibility. A model should be unable to predict values which violate
definitional constraints. For example, concentrations cannot be negative.

(e) Validation (structural stability). The model should provide a good fit, inside and
outside the sample. In order for this to be possible, the parameters or classification
rules should be constant within the sample period and this constancy should carry
over to data not in the sample period. The latter data could fall within the timespan of
the sample (principle of cross validation) or could lie in the future, the post-sample
period.

(f) Encompassing. A model is said to encompass a rival formulation if it can explain the
results given by the rival formulation. If this is the case, the rival model contains no
information that might be of use in improving the preferred model.  In order fulfil its
encompassing role, a model does not need to be more general than its rivals.

To meet these criteria as best as possible, we have made a number of refinements to the
approach given by Dekkers and Noordijk (1997). These refinements comprise diagnostic
checks to the data set prior to the estimation of a specific Regression Tree, transformation of
data, analysis of residuals, testing the stability of the final tree by the principle of cross-
validation, and comparison of  Regression-Tree performance to alternative/rival models. We
will describe these refinements in detail in §2.4.
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1.5 The report

In Chapter 2 we will describe the Regression Tree approach in more detail, illustrating the
theoretical considerations with an example on SO2 concentrations. Chapter 3 will be devoted
to a short, in-depth, description on the implementation of a Regression Tree analysis in S-
PLUS. S-PLUS is the standard statistical software package of RIVM (Dekkers, 2001).  More
details on this topic will be given in Visser (in prep.).  Our approach has resulted in an eight-
step procedure, summarized in §2.9. In Chapter 4 we will illustrate this eight-step procedure
by use of a simulation example. Simulated examples have the advantage that the correct
solutions are known a-priori and that the estimation procedure can be judged on its merits.

In Chapters 5 and 6 we will give case studies using the methodology given in Chapter 2.
Chapter 5 deals with nine regional PM10 stations in the Netherlands. In Chapter 6 we will
analyse 22 regional SO2 stations. For both pollutants we will show that meteo-corrected
regional concentrations show the same long-term trend as the uncorrected data. The extreme
concentrations in 1996, and to a lesser extent 1997, appear to originate from unusual cold and
dry winters at that time.
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2. Regression Tree analysis

2.1 Method

Tree-based modelling is an exploratory technique for uncovering structure in data and is
increasingly used for:
• devising prediction rules that can be rapidly and repeatedly evaluated;
• screening variables;
• assessing the adequacy of linear models;
• summarizing large multivariate data sets.

Tree-based models are useful for solving  both classification and regression problems. In
these problems, there is a set of classification or predictor variables, x = (x1, x2, … , xm), and
a single-response variable, y. In the literature tree-based models are denoted by the
abbreviation CART (Classification And Regression Trees).

If y has discrete values, classification rules take the form:

If x1 < 2.3 and x3 ∈ {A,B}
   then y is most likely to be in level 5

If y is numeric, regression rules for description or prediction take the form:

If x2 < 2.3 and x9 ∈ {C,D,F} and x5 ≥ 3.5
      then the predicted value of y is 4.75

In the first case we speak of a classification tree, and in the second, of a regression tree. A
classification or regression tree is the collection of many such rules displayed in the form of a
binary tree, hence the name. The rules are determined by a procedure known as recursive
partitioning.

Tree-based models provide an alternative to linear and additive models for regression
problems, and to linear and additive logistic models for classification problems.

Compared to linear and additive models, tree-based models have the following advantages:
• easier interpretation of results when the predictors are a mix of numeric variables and

discrete variables;
• invariant to monotone re-expressions of predictor variables;
• more satisfactory treatment of missing values;
• more adept at capturing non-additive behaviour;
• allow more general interactions (i.e. as opposed to particular multiplicative form)

between predictor variables;
• can model response variables, y, having more than two levels.
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In the following example (in italic) we deal only with regression trees, applied to air-
pollution time series.  In the second paragraph (in italic)  we show a hypothetical air-pollution
example. The data apply to a station measuring pollutant X. Concentrations are expressed in
µg/m3.

A factory emitting a substance X, is situated in the vicinity of the station (direction north-
northeast or more precise: 30 degrees). If the daily averaged wind direction is between 5
and 55 degrees, we measure a pollutant  concentration of 50 µg/m3 (the spread in wind
direction is due to dispersion of the plume;  concentrations are assumed to be homo-
geneous over the full width of the plume).  For all other directions, we measure a constant
background concentration of 20 µg/m3.

To generate the hypothetical concentration series X, we use real daily wind data for the
Netherlands over the period 1992-2001. Thus, we have 3653 daily concentration of either
20 or 50 µg/m3, depending only on the specific wind direction on that day. For estimating
the Regression Tree, we add 11 other meteorological variables as well as ‘wind direction’,
making a total set of 12 predictors (see data at the beginning of Chapter 4).

Clearly, the relationship between concentrations X and meteorology is simple and highly
non-linear. Below we estimate a Regression Tree for X and the 12 predictors. The result is
shown in Figure 1.

Figures within ellipses (nodes) or rectangular boxes (final nodes or leaves) represent averages
of the concentrations falling under meteo conditions described above the nodes. Figures
beneath the nodes are deviances, i.e. the sum of squared deviations of concentrations and the
average of all concentrations falling in that node. If the sum of deviances in the leaves is
much lower than the deviance in the highest node in the tree, we have made great
improvement by adding meteorological factors.

From the Regression Tree in Figure 1 we see that the tree algorithm identified the right
variable (Windr) to make splits for: wind direction. Furthermore, the values found for the
wind sector [5.0,55.0] degrees are reasonably accurate: [7.5,55.5] degrees. Finally, if wind
direction is found in the sector [7.5,55.5], concentrations are perfectly predicted: 50 µg/m3

(deviance equals zero). The same holds for wind directions > 55.5: 20 µg/m3. If wind
directions are < 7.5 degrees, predictions are slight to high: 28.4 µg/m3.
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Figure 1 Regression Tree for a hypothetical pollutant X, with increased concentrations
for wind directions from 5 to 55 degrees.
Figures in the ellipses (nodes) represent the average of all concentrations
falling under a specific meteo condition and mentioned above the node.
Rectangular boxes or final nodes are called the leaves of the tree. The figures
beneath nodes and leaves are deviances, i.e. the sum of squared deviations of
concentrations in that node/leaf and the average of concentrations in that
node/leaf. The splitting process depends on the reduction of the initial
deviance (here 303,000 [µg/m3]2) to a much smaller deviance. The sum of
deviances in the leaves accounts for: 7790 + 0 + 0= 7790 [µg/m3]2.
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 For the exact definition of terms such as ‘regression tree predictions’, ‘deviance’ and
‘predictive power’, we need some formal definitions. These are taken from the basic book on
regression trees by Breiman et al. (1984). We will use these definitions in §2.3 and §2.7
(yellow text blocks).

Definitions I

As mentioned above, for estimating a Regression Tree we have a response variable yi
(concentration of some pollutant) and m predictor variables xi = (x1,i,x2,i, … ,xm,i ). In this
report xi will consist of a set of m meteorological variables. The pointer i may be expressed in
days, as in Figure 1, or in months, as in Chapter 5.

Suppose all days or months fall into J classes (the leaves of the tree). We name these classes
1,2, …, J. The estimated Regression Tree (RT) defines a classifier or classification rule c(xi),
which is defined on all xi , i =1, 2, … , N. The function c(xi) is equal to one of the numbers
1,2, … , J.

Another way of looking at the classifier c is to define Aj , the subset of all xi on which c(xi) =
j:

Aj = { xi  c(xi) = j }                                                                                                            (1)

The sets Aj, j = 1, 2, … , J  are all disjunct and the unity of all sets Aj spans exactly all the N
cases we have.
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2.2 Pruning

Trees with too many nodes will over-fit our data. In fact, we could construct a tree with as
many nodes as days or months we have. The fit to the data will be very good. However, such
a tree does not serve our goal of finding parsimonious models (criterion (a) in section 1.4).
Therefore we have to look for an analogue of variable selection in Multiple Regression
analysis.

The established methodology is tree cost-complexity pruning, first introduced by Breiman et
al. (1984).  They considered rooted subtrees of the tree T grown using the construction
algorithm, i.e. the possible result of snipping off terminal subtrees on T. The pruning process
chooses one of the rooted subtrees.  Let Ri be a measure evaluated at the leaves, such as the
deviance (compare equation (3)), and let R be the value for the tree, the sum over the leaves
of Ri. Let the size of the tree be the number of leaves.

By pruning Regression Trees, we try to find an optimal balance between the fit to the data
and the principle of parsimony (criterion (a) in Section 1.4). To this end the full tree is
pruned to a great number of subtrees and evaluated as for minimization of the so-called cost-
complexity measure. Photo: H. Visser
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Then, Breiman et al. showed that the set of rooted subtrees of T which minimize the cost-
complexity measure:

Rα  =  R   +   α  . size

is itself nested. In other words, as we increase α, we can obtain optimal trees through a
sequence of snip operations on the current tree (just like pruning a real tree). For details and
proofs see Ripley (1996).

The best way of pruning is using an independent test set for validation. We can now predict
on that set and compute the deviance versus α for the pruned trees. Since  this α will often
have a minimum, and we can choose the smallest tree of which the  deviance is close to the
minimum. If no validation set is available, we can make one by splitting the training set.
Suppose we split the training set into 10 (roughly) equally sized parts. We can then use 9 to
grow the tree and the 10th to test it. This can be done in 10 ways and we can average the
results. This procedure is followed in the software we have implemented in S-PLUS. Note
that as ten trees must be grown, the process can be slow, and that the averaging is done for
fixed α and not for fixed tree size.

We give an example for SO2 concentrations at Posterholt station in the Netherlands.
Concentrations consist of daily averages over the 1989 – 2001 period. The Regression Tree is
shown in Figure 2. An example of a cross-validation plot for pruning is given in Figure 3A.
The optimal tree size has been computed (values lower x-axis) for a series of α values (on
upper x-axis). The values are averages of the ten-fold cross-validation procedure described
above. The values on the y-axis are the deviances over all leaves of the selected trees. The
graph has a clear minimum around six leaves. Thus, we decide to prune our full tree back to
one with six leaves. The result is shown in Figure 3B.
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Figure 2 Regression tree for daily SO2 concentrations measured at station Posterholt in
the Netherlands. Sampling period covers 1989 through 2001.
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Figure 3A Cross-validation plot for pruning the tree from Figure 2. Minimum is around
tree size 6.

Figure 3B Pruned tree for daily SO2 concentrations at Posterholt. Temperature variables
Tgem, Tmax and Tmin are expressed in 0.1 ˚C. Variable Regenduur stands for
rain duration (in hours).
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2.3 Predictions

Given an optimal pruned tree we can calculate daily or monthly predictions for
concentrations by averaging all concentrations that fall in a certain meteo class (leaf).
Therefore if we have meteo conditions which fall in that meteo class, our prediction is simply
the leaf average. Thus we have as many prediction values as leaves. The formal definitions
are given below.

Definitions II

Given an estimated tree with m leaves (or meteo classes), we want to make a single
prediction for days or months, with meteo conditions applying to a specific leaf j. On the
basis of the definitions in Section 2.1., the classification rule c puts each daily concentration
in  one of the meteo classes: 1,2, … , J. We can now define an RT prediction for all
concentrations yi falling in meteo class j. Normally, the arithmetic mean is taken for all
concentrations falling in class j. Other values could be the median or the modus. In this report
we will take the arithmetic mean.

Thus, the prediction ŷi,j ≡ µj  for a concentration on day or month i, belonging to class j, is:
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µ                                                                                                            (2)

where Nj is the number of cases in class j.

The deviance, Dj, is a measure of the variation of concentrations falling in class j. It is defined
as:
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yD µ                                                                                                    (3)

The predictions µj are given in Figure 1 within the ellipses and boxes, while the
corresponding deviance is given below each ellipse or box.

As a general notation we will denote the predictor function by ‘d’. Thus, for each
concentration yi we obtain the prediction ŷi = d(xi ), with ŷi one of the numbers µ1, µ2, … , µJ.

The variance of a specific prediction µj simply follows from the deviance (3): var(µj) = Dj/Nj.
By using this relationship we can generate confidence limits for predictions.
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We will now follow the SO2 example from the preceding sections. The daily concentrations
yi are plotted in Figure 4 against the predictions ŷi.  Because we have a classifier with six
meteo classes, we have six values on the y-axis. These six values are identical to those given
in the leaf boxes in Figure 3.

In interpreting the pruned in Figure 3B, we expect very high concentrations (45.8 µg/m3) if
daily averaged temperatures are below –0.65 ˚C and maximum daily temperatures are below
1.65 ˚C. This meteo class is typically a measure for winter smog conditions. We expect the
lowest SO2 concentrations (5.34 µg/m3) if daily temperatures are above –0.65 °C and rain
duration is over 0.5 hour and the minimum daily temperature is above 4.95 ˚C.

Figure 5 shows the concentrations and corresponding predictions as a time-series plot.
.
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Figure 4 Scatterplot of daily SO2 concentrations for Posterholt station (x-axis)
measured against RT predictions.

Figure 5 Daily SO2 concentrations for Posterholt station with RT predictions.
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2.4 Predictive power in relation to rival models

To compare two alternative models for the same concentration data, we need a measure for
prediction accuracy. Here, a rival model could be a regression tree with more or less nodes
than the current estimated tree. A rival model could also be a model following a different
statistical approach. Examples are the overall-mean predictor, the naive or persistence
predictor and the Multiple Regression predictor. The overall-mean predictor uses the overall
mean of all concentrations as a constant prediction for all new cases (days or months). The
naive predictor uses the value of the preceding day or month as a predictor for the following
day or month.

In the following text box we will define simple indices to evaluate the predictive power of a
specific estimated tree, relative to the three rival models mentioned above. All indices are
based on quadratic prediction errors.

Definitions III

Breiman et al. (1984) defines the following mean squared error RRT*(d) for a Regression
Tree (RT) with prediction rule d:

2

1

* )]([1)( �
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−=
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i
iRT xdy

N
dR

i
                                                                                            (4)

The asterisk is used to denote the fact that RRT is estimated on the data. Another well-known
measure for prediction performance is the minimum absolute deviation criterion (MAD). This
criterion is less sensitive to outliers. However, throughout this report we will use only  the
criterion defined in (4).

In a similar manner we may define mean squared errors for rival models. In our approach we
routinely estimate three rival models: the overall mean predictor, the naive predictor and the
Multiple Regression predictor. The overall mean predictor simply uses the overall mean of
the N concentrations (µ) as prediction for all days or months yi. We denote its mean squared
error by Rµ*. The naive predictor is also known as the persistence predictor and for each
concentration yi simply uses the concentration of the preceding day, thus yi-1. We will denote
its mean squared error by Rnaive*. The third model is the well-known Multiple Regression
model estimated on the same data set using the same meteorological predictor set xi. Its mean
prediction error is denoted by RMR*.
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From the mean squared errors given above we define the performance of our RT model
relative to that of these three rival model as:

*

*
* )()(

µ
µ R

dRdRE RT=                                                                                                               (5a)
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naive

RT
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dRdRE =                                                                                                          (5b)
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RT
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dRdRE =                                                                                                             (5c)

We also express these relative prediction measures in percentages to express the
improvement by using the RT model against one of the rival models:

(%)100*)](1[)( ** dREdP µµ −=                                                                                (6a)

(%)100*)](1[)( ** dREdP naivenaive −=                                                                          (6b)

(%)100*)](1[)( ** dREdP MRMR −=                                                                             (6c)

We note that in linear regression applications, the term 1 – RE*
µ(d) is called the variance

explained by d. And the sample correlation, expressed as percentage, would be equal to
P*

µ(d). However, in general, RRT
*(d) in equation (4) is not a variance; it does not make sense

to refer to it as ‘the proportion of variance explained’. The same holds for the squared
correlation.
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As an example we give the indices defined above for the SO2 regression tree shown in Figure
3. We find for this tree the following values: RRT

*(d) =  53, Rµ
* = 81 and Rnaive

* =  41
[µg/m3]2. Now, the relative indices are REµ

*(d) = 0.65, REnaive
*(d) = 1.28, Pµ

*(d) = 35% and
Pnaive

*(d) = -28%.

Clearly, the RT predictions are better than the overall-mean predictor (35%). However, the
RT predictions are 28% worse than those by the naive or persistence predictor. This indicates
that we have to look for better trees to outperform this rival model (compare  results in §2.8).

For the model shown in Figures 3B and 5, Regression Tree predictions are 28% worse than
those made by the naive or persistence predictor (today’s prediction is yesterday’s value).
Photo: H. Visser
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2.5 Transformation of concentrations prior to analysis

In time-series analysis it is good practice to check the data for trend and time-dependent
variability (heteroscedasticity). By the latter we mean that the variability of concentrations
may depend on the actual average level. Heteroscedasticity is tested through Range-Mean
plots (compare to Figure 10). The most common way of removing heteroscedasticity is by
applying a log-transformation prior to the estimation of a regression tree. Regression Tree
predictions can be transformed back to the original scale by taking exponentials.

In Regression Tree analysis a trend is not part of the set of predictors x. If we were to add a
linear trend to the set x,  the Regression Tree procedure would split our time-series into a
number of consecutive blocks over time (highest nodes in the tree). Then, for each block the
dependence on meteorology will be accounted for (lower nodes in the tree). In this way, the
number of days or months on which to estimate the actual meteo-related tree is reduced
considerably. For this reason, we did not consider the addition of a trend to x 1).

However, for estimating an RT, a particular time series should have stationary
characteristics. Stationarity in time-series analysis means that:
• the true (local) mean of a series is time-independent. E.g., a series may not contain a long-

term trend;
• the correlation structure is time-invariant. E.g., a stationary time series has a variance

which is invariant (homoscedastic) over time.

As an alternative, we remove a clear trend in the data, if necessary, and analyse the trend-
corrected data by Regression Tree analysis. Regression Tree predictions and meteo-corrected
concentrations (compare §2.7) are transformed back to the original scale by using the inverse
transformation.

Of course, there is a ‘grey area’, where it is not clear if we should remove the trend or not. In
these cases it is advisable to estimate a Regression Tree to both untransformed and
transformed concentrations, and to check for differences between the two.

We have implemented three transformations in the ART software (Chapter 3):

yt’  =  log (yt + b)                      (7)

with ‘b’ a constant, such that (yt + b) is positive for all time steps t. This transformation
stabilizes variability over time.

___________________________________________________________________________
1) We note that the approach of adding a linear trend to the set of predictors also has an advantage.

Because Regression Trees are estimated for two or more sub-periods, we can test the stability of the
tree as a function of time.
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If significant trends over time exist, we apply one of the following transformations:

yt’ =  yt - trendt                                                                                                                       (8a)

or

yt’ =  yt / trendt                                                                                                                       (8b)

Transformation (8b) has a stabilizing effect on the variability of the concentrations.

The trends in equations (8a) and (8b) are satisfactorily estimated by an n-degree polynomial
yt = a0 + a1t + … + antn.  As for concentration data, n has a maximal value of 3. To ensure
stable estimates of the polynomial, we use the function POLY from S-PLUS.

Another important group of transformations is formed by the Box-Cox transformations,
which have advantages in transforming data to normality. However, a disadvantage is the
interpretation of the transformed concentrations. We decided not to implement this group of
transformations.

As an example we have transformed the Posterholt SO2 data by using transformation (8b).
This transformation removes the trend, and the trend dependence of the variance, at the same
time. Now the tree shown in Figure 3 for untransformed data changes into the tree shown in
Figure 6. Comparing Figures 3 and 6 we see that the main variables used for splitting are
similar. However, the values for splitting differ between trees. The splitting order is also
different. We conclude that trend removal to be an essential first step in the analysis here.
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Figure 6 Regression tree for SO2 concentrations at Posterholt.
Before estimating the tree, transformation (8b) was used to remove the trend
from the data and to stabilize the variance over time. Transformed
concentrations vary at around 1.0. Splitting variables for average daily
temperature (Tgem), maximum daily temperature (Tmax) and minimum daily
temperature (Tmin) are expressed in tenths of ˚C. Rainfall (Regenmm) is
expressed in tenths of mm, and rainfall duration (Regenduur) in hours.
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2.6 Validation and stability of trees

As well as providing a good fit within the relevant sample, our optimal pruned regression
tree, and in fact any model, should give a good fit outside the data (compare criterion (e) in
section 1.4). Therefore it is good practice to use the data available as a so-called trainingset,
and to predict concentrations on other independent data; this is called the testset.

Criteria to evaluate the prediction performance of the tree to a testset or a trainingset, have
been given in section 2.4. Now RT predictions on the testset data are generated by using the
estimated tree, estimated in the trainingset, in combination with the explanatory variables
available in the testset. In this way our predictions are not based on any information on
concentrations falling in the testset. For the overall-mean predictor we use the mean for all
concentrations in the trainingset as the predictor for the concentrations in the testset.

An example of  cross validation is given in Table 1. Here, we evaluate the indices from
equations (6) and (7) for:
• all daily SO2 concentrations from Posterholt station (second column);
• all data minus the data of 1994 (third column);
• all concentrations occurring in 1994 (fourth column);
• all data minus the data for 2000 (fifth column);
• all concentrations occurring in 2000 (sixth column).

The table shows predictions during the testset periods 1994 and 2000 to be very good. Both
indices Pµ

*(d) and Pnaive
*(d) in the testsets are higher than the corresponding values in the

trainingset (compare percentages fourth row).

Table 1 Indices from equations (5) and (6) for all data (1992-2001), all data except the
days in 1994 (trainingset), all data in 1994 (corresponding testset), all data
except the days in 2000 (trainingsset) and all data in 2000 (corresponding
testset).

Index All data
1992 – 2001

All data,
except 1994

Data 1994 All data,
except 2000

Data 2000

REµ
*(d) 0.57 0.57 0.20 0.56 0.31

REnaive
*(d) 0.95 0.95 0.85 0.95 0.83

Pµ
*(d) 43% 43% 80% 43% 69%

Pnaive
*(d) 5% 5% 15% 5% 17%

The stability of an estimated tree could be low for two reasons. First, the tree may contain too
many nodes. In this situation many explanatory variables are able to lower the overall
deviance of the tree in the same small manner; furthermore, we can estimate a number of
equivalent trees.
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Second, a tree may be unstable if two or more explanatory variables are highly correlated. In
Multiple Regression analysis this problem is called multi-collinearity and in the filter theory
the filter is said to be not observable.  Lack of observability  means that the output of a filter
is not uniquely determined by its input variables.

In Regression Tree analysis multicollinearity manifests itself in the choice of specific variable
xi to make a certain split. Reduction in deviance is reached for multiple x-variables if they are
highly correlated. An example of multicollinearity in the examples throughout this report is
shown in the variables:
• daily averaged temperature (variable Tgem);
• daily maximum temperature (variable Tmax);
• daily minimum temperature (variable Tmin), and to a lesser extent;
• global radiation.
Scatterplots for Tgem, Tmax and Tmin are given in Figure 9.

Are there solutions to the problem of multicollinearity? The answer is simply no. Statistics is
not able to provide the exact unique relationships between some variables yi, x1,i and x2,i if x1,i
and x2,i are highly correlated. Information other than that based on statistical inferences
should answer which variable should be coupled to yi.

In most cases the instability of Regression Trees is caused by multicollinearity, i.e. high
correlation among the predictors x. To test for stability, we may compute the correlation
matrix of all predictors. A cross validation on the final tree will reveal instability as well.
Photo: H. Visser
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We note that some researchers have applied a principal component transformation to all
explanatory variables, making a new set of variables x’ (principal components) that are
uncorrelated with each other.  The modelling is then performed between yi and these
principal components (e.g. Fritts, 1976). However, a serious drawback of this approach is that
the selection-of-variables process (MR analysis) or the building of a tree (RT analysis) is
performed on xi’ variables which have no clear physical interpretation. Therefore we do not
advocate this approach.

2.7 Meteorological correction

We consider here two methods for calculating meteo-corrected concentrations on the basis of
an optimally pruned tree. The first method has been proposed by Stoeckenius (1991). A
meteo-corrected annual value or annual percentiles can be calculated with this method on the
basis of frequency of leaves within a certain year relative to the frequency of the leaves for all
years. The method of Stoeckenius has been described in detail in Dekkers and Noordijk
(1997). In Noordijk and Visser (in prep.) refinements will be given to the method of
Stoeckenius.

The second method has been described at the end of §1.3. The method gives meteo-corrected
value for each day or month (this is not the case for the method of Stoeckenius). Annual
averages or percentiles are simply calculated on these meteo-corrected days.

Throughout this report we will apply the latter method. An evaluation of both correction
methods will be given in Noordijk and Visser (in prep.).



RIVM report 722601 007 page 37 of 73

In Figure 7 we have plotted the daily concentration for SO2 at Posterholt, along with the RT
predictions, based on the optimal pruned tree shown in Figure 6. The graph shows much
overlap between measurements and meteo-corrected data, indicating that not much of the
daily behaviour of SO2 can be attributed to meteorological variations.

Figure 7 Concentrations (black curve) and RT predictions (green curve) for daily SO2
concentrations at Posterholt.
The pink curve shows the moving average of concentrations using a window
of 365 days, while the blue curve show the same for the meteo-corrected daily
data.
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2.8 Influence of sampling time

Finding rival models to a certain Regression Tree should not be limited to models based on
other statistical principles. One should also check the sampling time of the measurements, yi.
If one analyses concentrations on the basis of hourly data, one will find mainly local
meteorological conditions governing daily variations. If one uses daily averaged
concentrations, one will find mainly meteo variables governing variation over the
Netherlands within weeks. If one uses monthly averaged data, one will mainly find the meteo
variables governing the annual cycle, on the scale of NW-Europe. Therefore it makes sense to
check the sampling time when modelling concentrations.

As an example we have modelled the SO2 concentrations for the Posterholt station using
monthly averaged SO2 concentrations and the transformation (8b). The Regression Tree is
shown in Figure 8A and the corresponding time-series plot with concentrations and monthly
RT predictions in Figure 8B.

Figure 8A Regression tree for monthly SO2 concentrations at Posterholt.
Before estimating the tree, transformation (4c) was used to remove the trend
from the data and to stabilize the variance over time. Transformed
concentrations vary at around 1.0. Temperatures (Tgem) are expressed in ˚C,
total monthly precipitation (Regenmm) in mm, and wind speed (Windkr) in
m/sec.
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Figure 8B Concentrations (black curve) and RT predictions (green curve) for monthly
SO2 concentrations at Posterholt. The model is based on the Regression Tree
from Figure 8A.

The difference in the RT based on daily and monthly data is clearly shown by the great
differences in predictive power, as shown in Table 2. We can conclude from Table 2 that an
RT based on monthly SO2 data is much better in describing large-scale meteorological
conditions similar to those reflected in inter-annual variation of concentrations. A similar
result is found for PM10 concentrations (Chapter 5).

Table 2 Indices from equations (5) and (6) for daily and monthly SO2 concentrations.
Data are for Posterholt station.

Index Daily data
1992 – 2001

Monthly data
1992- 2001

REµ
*(d) 0.57 0.20

REnaive
*(d) 0.95 0.17

Pµ
*(d) 43% 80%

Pnaive
*(d) 5% 83%
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We note that by changing the sampling time from days to months, difficulties arise for wind
direction. A monthly averaged wind direction has no meaning. For this reason we have added
six dummy variables, each variable for one wind-direction sector of 60 degrees. Monthly
averages of these variables now give the fraction of days in a month with wind direction in
that particular wind sector. The sum of these monthly fractions is held to be 1.0.

2.9 Procedure in eight steps

In this document we aim to describe refinements of the approach of Dekkers and Noordijk
(1997). Basically, the method proposed here consists of an eight-step procedure:

1. Check for outliers with descriptive statistics on the data. Explore the relationships
between variables by scatter matrices.

2. Check to see if the original data should be transformed before RT analysis (e.g. to
eliminate trends).

3. Classify the meteorological conditions. To this end an initial Regression Tree is estimated
and then pruned  to give the final Regression Tree.

4. Calculate leaf numbers, leaf predictions and meteo-corrected concentrations.
5. Validate the optimal Regression Tree by omitting certain years of data. By predicting

these omitted data and comparing predictions with the real concentrations, an impression
is gained of the predictive power and the stability (robustness) of the optimal Regression
Tree  (the principle of cross validation).

6. Make diagnostic checks on residuals and leaf frequencies for the optimal tree.
7. Visually inspect concentrations, predictions and meteo-corrected concentrations.
8. Compare variables in the optimal Regression Tree as well the predictive power of the tree

with those found by estimating a Multiple Regression model on exactly the same data.

As a final step we may fit a low-pass filter through the meteo-corrected concentrations, which
allows the estimate of 90% confidence limits. In general, the fit is based on a second-order
polynomial (a 'parabola fit'). The filter separates an emission-related concentration trend and
noise. However, it assumes consistency in the measurements and a smooth change in
emissions (no sudden changes). Because of this assumption we name this step ‘optional’.
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2.10 Limitations

The Regression Tree approach also has limitations. We recall two drawbacks here of
importance for the interpretation of the Regression Tree results (compare §2.6):
• highly correlated predictors induce instability in tree estimates;
• if both response variable yt and  selected predictors xi,t contain long-term trends, the

meteo-correction procedure could become sub-optimal. The method cannot uniquely
distinguish between emission-induced changes in concentration and meteorologically-
induced changes.

We provided guidelines in §2.6 to detect potential instability of tree estimates by the reasons
mentioned above. However, if such instabilities  occur, results should be presented with care.
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3. ART software

3.1 S-PLUS functions and scripts

A state-of–the-art software library on CART analysis is available within S-PLUS. A general
description on S-PLUS for RIVM is given by Dekkers (2001). The implementation of
Regression Tree routines is described in S-PLUS ( 2000) and Venables and Ripley (1997).

We have extended the RT software library of S-PLUS with a number of scripts and functions
to enable the analyses and tests described in the preceding chapter. We have named this
software tool  ART ( Air pollution by Regression Trees).

ART consists of a number of S-PLUS scripts and routines. In the S-PLUS script (Appendix
A) a number of these functions are named. Details on these functions and additional scripts
will be given in Visser (in prep.). In Chapter 4 we will give a step-by-step example of the
use of ART based on the script given in Appendix A.

The Regression Tree methodology is implemented in ART (Air pollution and Regression
Trees). This software is based on S-PLUS routines. Photo: H. Visser
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3.2 Preparing data prior to analysis

Because the ART software is implemented within S-PLUS, one has to import air pollution
data and meteorology into S-PLUS. Data structures in S-PLUS are called dataframes. In
Visser (in prep.) a detailed description is given on how to import air pollution data from a
number of stations into one data frame. A script is also given for the import of meteorology
and divided into five regions over the Netherlands, leading to the generation of 5 data frames.

As a final step, all air pollution stations are coupled to the meteo-region data frame to which
they correspond, leading to 5 additional data frames. ART analyses are performed on these
final data frames.
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4. Regression Tree analysis step by step

In this chapter we will demonstrate the estimation of a proper Regression Tree with
corresponding concentration predictions and meteo correction as a 7-step procedure. For
illustrative purposes we have made a simulated example (Appendix G in Visser, 2002; the
yellow area).

Here, a data frame, Pseudo5, is generated with a dependent variable yt  =  Tgem/10, i.e. our
air pollution component is 100% linear coupled with air temperature (divided by 10 to obtain
temperature in oC). Explanatory variables are:

1. Tgem daily averaged temperature in tenths ºC
2. Tmin minimum hourly temperature in tenths ºC
3. Tmax maximum hourly temperature in tenths ºC
4. RHgem relative humidity in %
5. Regenmm amount of precipitation in tenths mm
6. Pgem  air pressure in mbar
7. Stralgem radiation in J
8. PercStral  percentage radiation
9. Windr wind direction in degrees
10. Windkr wind speed in m/sec
11. Pasqudag Pasquill stability class for daytime conditions
12. Pasqunacht Pasquill stability class for night-time conditions

This example is also interesting because we can see how RTA handles (perfect) linear
relations between yt, and one or more explanatory variables. This is typically a situation
where Multiple Regression (MR) will find the right relationship because MR estimates linear
relations by definition.

Furthermore, we know the perfect prediction for each day, Tgemt/10, in advance. We also
know the meteo-corrected daily value of ‘Index’ in advance. Because all variations in the
series ‘Index’ are due to meteorological factors, the meteo-corrected ‘Index’ should be
constant over time. This value is the average value of the variable Tgem/10 over all 3653
days in the period 1992-2001: 10.3 ºC. How well will our Regression Tree estimation
procedure reconstruct these values?

The eight-step procedure is given in Appendix A as an S-PLUS script. In the following
sections we will describe these steps using the data from data frame Pseudo5.
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4.1 Step 1: looking at the data

We block aa.dat <- Pseudo5[-1:-365,] (yellow area in Appendix A) in the SPLUS script
RTAonPseudoseries. In doing this   we copy our dataframe, Pseudo5 to the general
dataframe aa.dat. The addition [-1:-365,] means omitting  the first 365 days in the dataframe
(this is the year 1991). Now the analysis covers the years 1992 through 2001, where N =
3653 days.

Second, we block m<- ….  , to generate general statistics for each of the variables in our
dataframe.  This is for a general check on the input data. How many data are missing and are
there specific outliers?

Third, we block guiplot… to generate a scatter-plot matrix between all variables involved.
The first scatter-plot matrix for Pseudo5 is given in Figure 9. Here, we see the perfect linear
relation between variable Index (our dependent variable yt) and explanatory variable Tgem.
yt is also highly correlated to variables Tmint and Tmaxt, which reflects the high correlation
between daily averaged, daily maximum and daily minimum temperatures.

 Figure 9 Scatter-plot matrix for eight variables from Pseudo5. Variable ‘Index’ is the
dependent variable. Time t is in days and runs from 1992 to 2001 (N= 3653).
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Finally, we complete the text string vector luvo with the variable names of the 12 explanatory
variables mentioned above. We note here that the string vector luvo may contain any subset
from the 12 explanatory variables.

4.2 Step 2: transformation of concentrations

Step 2 is marked in the colour green in Appendix A. In this step we verify if data should be
transformed before performing a Regression Tree analysis. See §2.6 for details. Figure 10
shows the range-mean plot. The points lie more or less on a horizontal line, indicating that the
variance for each year does not depend on the corresponding annual mean concentration.

Figure 10 Range-mean plot for variable Pseudo5.

A time-series plot with the long-term trend is given in Figure 11. The graph confirms our
findings from Figure 10: no transformation is needed for this example.
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Figure 11 Time-series plot for Pseudo5 with estimated trend (green line).
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4.3 Step 3: initial Regression Tree and pruning

Step 3 is marked in the colour blue in Appendix A. In this step we block f.RTAnew (aa.dat,
”Pseudo5”, ”Index”, luvo, 1, 80, 40). The second argument, Pseudo5, is used as a unique
identification of files and graphs. The same holds for Index, which, at the same time,  is the
name of the yt variable. The raw initial tree is given in Figure 12. This graph is automatically
displayed by S-PLUS.

Figure 12 Raw initial tree with identification Pseudo5.Index.met1.

From Figure 12 we see that the trees contains eight leaves and all splits are done using
variable Tgem. Note that the variable Tgem has a unity of tenths of ºC, so the values should
be divided by 10 to obtain the value in ºC.

Second, we obtain a menu for choosing a lower number of leaves, used for pruning of the
initial tree. We can decide to prune on the basis of the cross-validation plot given in Figure
13, which is also automatically displayed by S-PLUS. We see from Figure 3 that the number
of eight leaves is optimal and, therefore, we decide to keep the full tree with eight leaves (in
real applications we will choose a number much lower than the maximum number of leaves
found in the initial raw tree).

The final tree, which in our case is equal to the raw initial tree, is saved in a Postscript file
c:RTAdataOri/Pseudo5.Index.met1. By clicking this file, GSview will display the final tree
in a format more elegant than that shown in Figure 12. The tree can be blocked by choosing
Edit and Copy C in GSview. Then it can be displayed in a Word file by typing Cntrl V. See
Figure 14 for this final tree.

All calculated results are sent to the screen and automatically printed on the standard black-
and-white printer.

| Tgem<103.5

Tgem<38.5

Tgem<-5.5 Tgem<71.5

Tgem<162.5

Tgem<133.5 Tgem<199.5

 -3.058   1.949   5.610   8.732  11.840  14.810  17.840  22.020

This is the raw initial tree of  Pseudo5.Index.met1
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If a transformation is chosen (variable Trans in the argument list of function f.RTAnew set
to ‘2’ or ‘3’), S-PLUS will generate plots of the original data with the estimated trend, as well
as a plot of the de-trended data. Now the Regression Trees will be estimated on these de-
trended concentrations. If the estimated trend is too inflexible, a more flexible trend may be
estimated by setting the last argument from f.RTAnew to a higher number (a polynomial
with a higher order is chosen).

Figure 13 Cross-validation plot for finding the optimal number of leaves (plotted on the
x-axis). The curve has no clear minimum. Therefore, we choose eight as the
optimal number of leaves.
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Figure 14 Postscript version of the final tree for data frame Pseudo5.
Note that variable Tgem is in tenths of ºC. The ellipses in the tree are the
nodes, and the rectangular boxes are the final nodes or ‘leaves’ of the tree. The
values in the ellipses and boxes are the averages of the concentrations of all
days falling in that specific node. These values are also used as predictions (if
the original data have not been transformed). The figure beneath each box
stands for the deviance of the data belonging to the node, i.e. the sum of the
squared deviances (yi – ymean)2 for all i belonging to a specific node.

4.4 Step 4: meteo-corrected annual data

Step 4 is marked in Appendix A by the colour ‘white’. The function f.RTAfreq calculates
the daily predictions and meteo-corrected daily data. These data are sent to the file
c:RTAdataOri/Pseudo.Index.met1.dat. Calculated statistics are given on the screen and
printed automatically to the standard black-and-white printer.
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We will mention two important results from the output. First, on prediction errors (§2.7): the
output shows (i) the mean squared prediction errors (R*(d)), (ii) idem for a model which has
the constant prediction ymean for all days (Rµ*), and (iii) idem for the “naive model”
(Rnaive*). In the latter model we use for the prediction of the value yt simply the value yt-1 of
the preceding day. From the output we read that the Regression Tree predictions are 97%
better than the predictions by the “ymean model” (Pµ*(d)) and 71% better than the “naive
model” (Pnaive*(d)).

Second, the output shows that meteo-corrected concentrations vary between 10.3 and 10.5.
This holds for both meteo-correction methods. The real meteo-corrected value is 10.3 for all
days. Thus, the regression tree with eight leaves is very well able to reconstruct the right
value.

S-PLUS automatically generates five plots. The first plot is given in Figure 15. It is a good
illustration of how a Regression Tree approach deals with linear relations between yt and one
or more explanatory variables. We have 8 leaves and therefore 8 values to choose for a
prediction for a specific day. The Regression Tree has simply split the temperature variable
‘Tgem’ into 8 non-overlapping intervals and uses the average of the temperatures within a
leaf as the prediction of a specific day.

Figure 15 Scatterplot for daily concentrations (x-axis) and Regression Tree predictions
for corresponding days.
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The meteo-corrected annual values for yt (the variable ‘Index’) is given in Figure 16. The
Figure shows the correction procedure according to Stoeckenius (lower graph) and the
method described in §2.4 (upper graph). As mentioned above, the Regression Tree
approximation is good, but slightly above the real value of 10.3 (annual predicted values vary
between 10.3 and 10.5). We also note that both meteo-correction methods yield identical
annual corrected Indices (Figure 16).

Figure 16 Annual averaged concentrations with meteo-corrected annual values, based
on the correction procedure of Stoeckenius (upper graph) and the correction
method described in §2.4 (lower graph).
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4.5 Step 5: validation of the final Regression Tree

Step 5 is marked in Appendix A by the colour light grey. In this step we estimate the optimal
tree for all years except 1995 and 1999. The daily values for the years 1995 and 1999 are then
predicted using the estimated tree with eight leaves. In the output we can read how the
predictions are in relation to the ‘ymean model’ and the ‘naive model’. We can also compare
these results with those found in the preceding section.

The result is that the predictions for the years 1995 and 1999 are 97% better than ‘ymean’
(Pµ*(d)) and 75% better than ‘naive’ (Pnaive*(d)). Estimates over all the years except 1995 and
1999, i.e. the years for which we have estimated the Regression Tree, yield 97% and 71%,
respectively (in step 4 we found identical percentages). This result shows that our regression
tree approach is very stable if data are left out (in this example, we have left out 20% of the
data).

4.6 Step 6: diagnostic checks

Step 6 is marked in Appendix A by the colour pinkish grey. Three diagnostic graphs are
generated in this step. The first graph is shown in Figure 17A. Here, we see that for each
year the frequency of the eight leaves is expressed in days on the x-axis (each panel
representing one of the years, 1992 through 2001).

The second plot is given in Figure 17B. Here, we see that for each leaf the frequency of the
10 years (1992 – 2001) is expressed in days on the x-axis (each panel representing one of the
eight leaves). First, this plot is important for finding effects of meteorological changes over a
range of years: for example, the bar chart for leaf 1 shows a decreasing tendency over 1992-
2001. As the method corrects for meteorological fluctuations and for systematic drifts in
meteorology (e.g. climatic change), the trend in meteo-corrected concentrations may differ
from the trend in the original concentrations. Second, the plot can be used for the detection of
missing meteo classes in a specific year.

The third plot is given in Figure 17C and shows for each leaf a histogram for each leaf of all
yi values falling in that specific leaf. A number of skewed histograms may indicate  that the
original yt values should be transformed (the splitting of branches in the tree is based on
variances, but the variance of  skewed data is less meaningful).
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Figure 17A Trellis plot with histograms for each year, with each histogram showing the
number of the leaves (1 through 8) on the y-axis and the number of days on the
x-axis in that specific year, with concentrations falling in that specific leaf.

1

2

3

4

5

6

7

8

year= 1992

20 40 60 80

year= 1993 year= 1994

20 40 60 80

year= 1995

1

2

3

4

5

6

7

8

year= 1996 year= 1997 year= 1998 year= 1999

1

2

3

4

5

6

7

8

year= 2000 year= 2001

20 40 60 80

year= NA

n

Number of days n, as a function of leafnr, split up for each year



page 56 of 73 RIVM report 722601 007

Figure 17B Trellis plot with histograms for each leaf, with each histogram showing the
number of years (1992 through 2001) on the y-axis and on  the number of days
on the x-axis for that specific leaf, with concentrations falling in that specific
year.
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Figure 17C Trellis plot with yi histograms for each of the 8 leaves, index i covering all
days with concentrations for that specific leaf.
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4.7 Step 7: visual presentation

Step 7 is marked in Appendix A by the colour red, where we made a plot using the script
RTAplotPredictions. The result is shown in Figure 18. The blue curve is very close to the
real meteo-corrected value of 10.3.

Figure 18 Plot of yt variable Index (red curve) and the daily RT predictions (green
curve).
The black curve represents the moving average of the Index using a window
of 365 days (if less than 270 days are available, the value NA is returned).
Analogous to this, the blue curve represents the moving average of the daily
meteo-corrected Index values. Values of the black and blue curve at the
vertical grid lines are equal to the annual values shown in Figure 16.

4.8 Step 8: Multiple Regression versus Regression Trees

Step 8 is marked in Appendix A by the colour dark green. A Multiple Regression analysis
was performed on yt and all 12 explanatory variables. As was expected, MR detects ‘Tgem’
as the one and only variable with a perfect fit: R2 = 1.0 and all residuals zero!
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5. PM10 at nine regional stations

As a case study we have chosen nine regional PM10 stations in the RIVM  National Air
Quality Monitoring Network (LML), which were in operation over the years 1992-2001. We
have left out station Witteveen in this case study. Concentrations for this station show a
decreasing trend due to environmental changes at the monitoring site. For general
information on PM10 we refer to Visser et al. (2001), and Buringh and Opperhuizen
(2002a,b).

The location of the stations is shown in Figure 19, with the caption also naming the division
into 3 groups: regional stations, city stations and street stations. In this Chapter we will give
the results for the nine regional stations only. The meteorological information has been
provided by KNMI and contains the variables listed at the beginning of Chapter 4.

5.1 Analysis at individual stations

We started by performing analyses on the daily averaged PM10 levels. This, however, resulted
in only 35% of explained variance in the PM data. For the second analysis, based on the
monthly average PM values, the meteorologically explained variance rose to 60-70%. This
remarkable difference may partly be explained by the phenomenology of PM. PM stays in the
ambient air for a couple of days until it is removed by either dry or wet deposition. Due to the
wind regime in the Netherlands, the ambient concentrations are influenced to a large extent
by the situation in neighbouring countries. The meteorological factors used here, however,
only pertain to the meteorology for the Netherlands;  its variance on a daily basis does not say
very much about the situation in the rest of Western Europe. Monthly meteorological
averages in the Netherlands are more influenced by large-scale meteorology and form,
therefore, a better basis for meteo correction of PM.

The results show that the main meteorological factors explaining the variance are rainfall,
temperature, wind speed and wind direction. Continental wind directions result in higher
concentrations, just as days with sub-zero temperatures. At the coastal stations temperature
seems to be the main variable; in the east and south of the Netherlands the rainfall is a
slightly stronger explanatory variable for local concentrations of PM. The lowest monthly
averages varied from 20-30 µg/m3 and the highest reached values of 60-70 µg/m3.

The year 1992 is less reliable, because a number of the time-series in this first year of
measurements are incomplete and because of some starting problems in the measurement
technique.

An example is Vredepeel (code 131), shown in Figure 20 . This figure shows the estimates
for monthly data and the estimated tree. Main splits are on temperature (variable Tgem),
precipitation (variable Regenmm) and wind speed (variable Windkr). Because of the trend
transformation (equation (8b)),  node values vary around 1.0.
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Figure 19 Map of the Netherlands giving the PM10 monitoring locations. Codes are
explained below. Stations in green are regional; stations in blue are city
background stations and stations in red are city street stations.

131 Vredepeel-Vredeweg
133 Wijnandsrade-Opfergelstraat
230 Biest Houtakker-Biestsestraat
318 Philippine-Stelleweg
437 Westmaas-Groeneweg
444 De Zilk-Vogelaarsdreef
538 Wieringerwerf-Medemblikkerweg
722 Eibergen-Lintveldseweg
724 Wageningen-Binnenhaven
929 Witteveen-Talmaweg (omitted from analysis)

404 Den Haag-Rebecquestraat
418 Rotterdam-Schiedamsevest
441 Dordrecht-Frisostraat
520 Amsterdam-Florapark

236 Eindhoven-Genovevalaan
433 Vlaardingen-Floreslaan
639 Utrecht-Erzeijstraat
641 Breukelen-Snelweg
728 Apeldoorn-Stationsstraat
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Figure 20 Regression Tree graphs for the regional PM10 station, Vredepeel. The upper
graph shows the monthly averaged concentrations in µg/m3, the predictions,
and the meteo-corrected concentrations. Also given are the 12-month moving
averages of the original concentrations (pink curve) and the meteo-corrected
concentrations (blue curve). The lower graph shows the corresponding tree
with five leaves. Splitting variables are temperature (Tgem) expressed in ˚C,
precipitation (Regenmm), in mm and wind speed (Windkr), in m/sec.
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Highest PM10 concentrations occur if monthly averaged temperatures are below 3.8 ºC and at
the same time monthly precipitation totals are below 34 mm. Lowest concentrations occur if
monthly temperatures are above 3.8 ºC and at the same time monthly averaged wind speed is
above 5.0 m/sec.

From the upper graph in Figure 20 we see that the moving averages of both concentrations
and meteo-corrected concentrations decrease similarly from 52 µg/m3 in 1992 to 36 µg/m3 in
2001, i.e. a decrease of 16 µg/m3 in a ten-year period! Furthermore, concentrations are
elevated in 1996 due to two unusual cold, dry winter months.

From these results we can conclude that the long-term downward trend is not influenced by
meteorological variability.

Figure 21 confirms this conclusion from a slightly different angle. This Trellis graph shows
the frequency from 1992 for each leaf (= meteo class) of Figure 20. The numbering of leaves
(1-5) corresponds to the number in the lower graph of Figure 20 (simply follow the leaves
from left to right). None of the five panels shows a clear trend over time. This result is
consistent with the moving-average trends in Figure 20.

Figure 21 A trellis graph showing the frequency of occurrence, expressed as the number
of  months (x-axis), as a function of year (y-axis).
Each panel corresponds to one of the five leaves shown in Figure 20 (leaf #1 is
at the far left of the tree).
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5.2 Regional averages

Results for stations other than Vredepeel were similar, although Regression Trees differed on
details. Therefore we have annual averaged concentrations and meteo-corrected
concentrations for all nine regional stations, leading to two regionally averaged curves. These
curves are presented in Figure 22.

The annual regional concentrations clearly show a downward trend over the years. The
annual averaged measurements of all nine regional stations (red curve in Figure 22) decrease
from 43.3 µg/m3 in 1992 to 31.7  µg/m3 in 2001. In other words, a decrease of 11.6 µg/m3

occurs in a ten-year period;  relative to the year 1992, this decrease is 27%. As mentioned in
the preceding section, the year 1992 was the starting year of the PM10 monitoring network.
We have estimated that concentrations in this specific year were probably  ~1 µg/m3 too high.
Therefore the decrease is slightly lower: ~25%.

Figure 22 Annual-averaged concentrations for nine regional PM10 stations in the
Netherlands.
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After correction for meteorology there seems to be difference in the PM concentrations for
the period 1992-1998 and the post-1998 period. Up to 1998 the decrease in PM levels seems
limited. Afterwards, the decrease in concentrations is somewhat speeded up.

Due to the cold and dry winter of 1996, and to a lesser extent of 1997, PM levels are elevated
(compare leaf #1 in the lower graph of Figure 20, and the lower left panel in Figure 21),
yielding a lower concentration than was to be expected. An extremely cold winter may lead
to PM concentrations, which, on an annual-average basis, are elevated by approximately 4
µg/m3. For the individual stations this elevation varies from 2 to 7 µg/m3.

The fact that PM10 concentrations are somewhat lower (~ 2 µg/m3) at the end of the nineties
(1998, 1999, 2000), can be attributed to meteorological circumstances too. There were fewer
days with sub-zero temperatures than usual, and winters were predominantly wet (compare
frequencies in the lower left panel of Figure 21). At the same time wind speeds in the spring-
summer-autumn period were relatively high (compare upper right panel of Figure 21).

We conclude that
• the decrease of PM10 over the past 10 years accounts for ~11 µg/m3. Relative to 1992 this

implies a decrease of ~25%;
• this decrease is not influenced by meteorological variability;
• annual concentrations may be lowered by ~2 µg/m3 for wet and mild years with wind

speeds slightly higher than average. Annual concentrations may be elevated by ~ 4 µg/m3

in years with extreme cold and dry winter months.

5.3 Relation to emissions

We have concluded above that PM10 concentrations decreased by ~25% over the period
1992-2001. Now, how can this downward trend be explained? The obvious answer is: by
decreasing emissions of  PM10. In this paragraph we will couple trends in concentrations and
trends in emissions.

Figure 23 shows total anthropogenic emissions of PM10 in the Netherlands and surrounding
countries (Germany, Belgium, United Kingdom and France). The emissions of primary PM10,
SO2, NOx and NH3 are a weighted sum for each country and substance according to their
contribution to the annual mean PM10 concentration in the Netherlands. The sum of emission-
equivalents drops from 318 kTonnes in 1990 to 167 kTonnes in 1999.  This is a decrease of
almost 50% over the period 1990-1999. Thus, the decrease of emissions is roughly the double
of  concentrations. How could the difference be explained?

Visser, Buringh and Breugel (2001, Table 34B) have shown that PM10 consists of a
considerate part of natural dust. This natural contribution was in 1998/1999 roughly 8 µg/m3

for the Netherlands as a whole. Contributions are for sea salt (~ 5 µg/m3), for wind-blown
dust (~ 2 µg/m3) and  for the Northern Hemisphere background concentration (~ 1 µg/m3). If
we substract the natural contribution from the annual concentrations in Figure 23, the trend
decreases from 34.3 µg/m3 in 1992 to 23.7 µg/m3 in 2001. Relative to 1992 we have a
decrease of 31%.
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Thus, also after correction for natural PM sources, emissions still show a stronger downward
trend.

From the inferences above we conclude that
• the downward trend in regional PM10 concentrations is due to inland and foreign emission

reductions;
• the decrease in concentrations is somewhat less pronounced than the decrease in

emissions, even if concentrations are corrected for the contribution of natural sources of
PM10.

Figure 23 PM10 emission equivalents for the Netherlands, expressed in kTonnes.
Emissions were scaled according to anthropogenic contributions of primary
PM10, SO2, NOx and NH3 and the surrounding countries Germany, Belgium,
United Kingdom and France.

1990 1992 1994 1996 1998 2000 2002
Year

0

50

100

150

200

250

300

350

PM
10

 e
m

is
si

on
 e

qu
iv

al
en

ts
  (

kT
on

ne
s)



page 66 of 73 RIVM report 722601 007



RIVM report 722601 007 page 67 of 73

6. Summary and conclusions

It is well known that a large part of the year-to–year variation in annual distribution of daily
concentrations of air pollution is due to fluctuations in the frequency and severity of meteo
conditions. This variability makes it difficult to estimate the effectiveness of emission control
strategies (Stoeckenius, 1991).

In this report we have demonstrated how a series of binary decision rules, known as
Classification and Regresion Trees (CART) can be used to calculate pollution concentrations
that are standardized to levels that would be expected to occur under a fixed (reference) set of
meteorological conditions. Such meteo-corrected concentration measures can then be used to
identify ‘underlying’ air quality trends resulting from changes in emissions that may
otherwise be difficult to distinguish due to the interfering effects of unusual weather patterns.

Concentrations of pollutants are influenced by the frequency and severity of meteorological
conditions. To remove this influence Regression Tree analysis is an important tool. Adjusted
concentrations can now be used more effectively in assigning the influence of control
strategies. Photo: H. Visser
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CART analysis has a number of advantages over other classification methods, such as
Multiple Regression or Logistic Regression. First, it is inherently non-parametric. In other
words, no assumptions have to made about the underlying distribution of values of the
response variable or predictor variables. Thus, CART can handle numerical data that are
highly skewed or multi-modal, as well as categorical response variables with either an ordinal
or a nominal structure. Second, the relationship between the response variable yi  and
predictors x may be highly non-linear. Third, the CART results are relatively easy to
interpret.

We have refined the Dekkers and Noordijk (1997) methodology for Regression Trees. These
refinements comprise:
• checks on the data for outliers, missing values and multi-collinearity among the predictors

x. The latter tests for instability of the estimated trees;
• checks for transformation of concentrations prior to the estimation of a Regression Tree;
• cross validation of the final tree;
• evaluation of the predictive power of the final tree in relation to rival models. These rival

models comprise models based on other statistical principles as well as on a change in
sampling time from daily to monthly data.

The Regression Tree approach also has limitations of importance for the interpretation of the
Regression Tree results:
• highly correlated predictors induce instability in tree estimates;
• if both response variable yt and  selected predictors xi,t contain long-term trends, the

meteo-correction procedure could become sub-optimal. The method cannot uniquely
distinguish between emission-induced changes in concentration and meteorologically
induced changes.

Although we have given guidelines to detect the occurrence of the situations above, if they
occur, results should be presented with care.

We have applied the Regression Tree methodology to nine regional stations of PM10 in the
Netherlands. Each PM10 station consisted of daily data  for the period 1992-2001. To couple
each station to local meteorological conditions, we divided the Netherlands into five regions
and attributed each station to one of these regions. Results are itemized below:

• RT models based on monthly concentrations of PM10 outperformed those based on daily
data. Apparently, monthly averaged meteorology is more influenced by large-scale
meteorology in Europe, governing periods with extreme concentrations.

• The long-term trend in regional PM10 concentrations was not influenced by
meteorological variability.

• The concentration trend shows large similarities to trends in emissions.
• Anthropogenic emissions drop even more rapidly (~50%) than regional concentrations

corrected for natural emission sources (~30%);
•  Due to the cold and dry winter of 1996 (and to a lesser extent that of 1997) concentration

levels rose to a great extent. Annual concentrations were elevated by 4 µg/m3 (11% of
average level in 1996).
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 Appendix A S-PLUS script   RTAonPseudoseries

###########################################################################
#
# S-PLUS-script for perfoming a full Regression Tree analysis as an 8-step

procedure.
# Original data are copied to dataframe 'aa.dat' for convenience.
#
# Programmer: H.Visser (CIM-RIVM)
# Date: 11 June, 2002
#

###########################################################################
#
# Step 1.  Descriptive analysis of data.
#
aa.dat <- Pseudo5[-1:-365,]

m <- menuDescribe(data = aa.dat, variables = "<ALL>", grouping.variables =
"(None)",

max.numeric.levels = 10, nbins = 6, min.p = T, first.quant.p = F, mean.p =
T, median.p = F,

third.quant.p = F, max.p = T, nobs.p = T, valid.n.p = T, var.p = F, stdev.p
= F, sum.p = F,

factors.too.p = T, print.p = T, se.mean.p = F, conf.lim.mean.p = F,
conf.level.mean = 0.95,

skewness.p = F, kurtosis.p = F)
f.print(m)
#
guiPlot( PlotType = "Scatter Matrix", DataSet = "aa.dat", Columns = "Index,

Tgem, Tmin, Tmax,
    RHgem, Regenmm, Regenduur, Pgem")
graphsheet()
guiPlot( PlotType = "Scatter Matrix", DataSet = "aa.dat", Columns = "Index,

Stralgem, PercStral,
    Windr, Windkr, Pasqudag, Pasqunacht")
#
luvo <-

c("Tgem","Tmin","Tmax","RHgem","Regenmm","Regenduur","Pgem","Stralgem",
  "PercStral","Windr","Windkr","Pasqudag","Pasqunacht")
#
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###########################################################################
#
# Step 2. Here we make 2 plots from which we can judge if a transformation
#         on the original concentrations is needed. If points in the Range-

mean plot
#         show an increasing tendency, this points to a log-trafo or
#         to a division by an estimated polynomial trend.
#         N.B.: in the first line the dataframe 'aa.dat' with y en x values
#               is copied to 'x.dat'. We only use the column with variable
#               JJJJ and the y-variable. First 'JJJJ', then 'yvar'.
#
x.dat <- aa.dat[,c(4,1)]
len <- length(x.dat[,1])
x.dat <- cbind(1:len,x.dat)
names(x.dat)[1] <- "time"
x.dat[1:10,]
Polyorder <- 2
x.lm <- lm(x.dat[,3] ~ poly(x.dat[,1], Polyorder), na.action = na.exclude)
trend <- predict(x.lm)
plot(x.dat[,1], x.dat[,3], xlab= "Time", ylab= "Concentration")
lines(x.dat[,1], trend, col = 4, lwd = 3)
title(paste("Original data and ", Polyorder, "order trend"))
#
x.mean <- aggregate.data.frame(x.dat[,3],x.dat[,2],mean,na.rm=T)
x.mean
x.var <- aggregate.data.frame(x.dat[,3],x.dat[,2],var,na.method="omit")
x.var
x.sd <- sqrt(x.var$x)
x.ave <- x.mean$x
plot(x.ave,x.sd, xlab= "Annual mean concentration", ylab= "SD of annual

concentration")
title("Range-mean plot for original concentrations")
#

###########################################################################
#
# Step 3.   First analysis of the Regression Tree and subsequent pruning of

this tree.
#
f.RTAnew(aa.dat, "Pseudo5", "Index",luvo,1,80,40,0,0)
#

###########################################################################
#
# Step 4.  Calculation of diagnostics and meteo-corrected concentrations

for the optimal tree.
#
#
f.RTAfreq(aa.dat,"Pseudo5", "Index",luvo,1,80,40,8,2001,0,0,0)
#

###########################################################################
#
# Step 5.  Cross validation of the optimal tree. The years that are omitted

in the estimation of the tree,
#          are in 'cvyears'.
#
cvyears <- c(1995,1999)
f.RTAcrossval(aa.dat,"Pseudo5", "Index",luvo,1,80,40,8,cvyears)
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#
###########################################################################
#
# Step 6.  Three trellis graphs are generated for diagnostic checking of

the estimated tree.
#
#
b.dat <- na.omit(Pseudo5.Index.met1.dat)
graphsheet()
barchart(nleaf~n|paste("year=",as.character(JJJJ)),b.dat)
title("Number of days n, as a function of leafnr, split up for each year")
barchart(JJJJ~n|paste("leafnr=",as.character(nleaf)) ,b.dat)
title("Number of days n, as a function of yearnr, split up for each leaf")
histogram(~residual|paste("leafnr=",as.character(nleaf)), b.dat)
title("Distribution of RT residuals for all years, split up for each leaf")
#

###########################################################################
#
# Step 7.  A time-series plot of the RT predictions and the meteo-corrected

concentrations can be generated by starting script 'RTAplotPredictions'.
#

###########################################################################
#
# Step 8.  Finally we perform a Multiple Regression analysis on the same

data as we use for RTA: 'aa.dat'.
#
f.MultRegr(aa.dat,"Pseudo5","Index",luvo,1,2,0,0)   #
#

###########################################################################
#
# The end.
#
###########################################################################


