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Abstract. In December 2015, 195 countries agreed in Paris
to “hold the increase in global mean surface temperature
(GMST) well below 2.0 ◦C above pre-industrial levels and
to pursue efforts to limit the temperature increase to 1.5 ◦C”.
Since large financial flows will be needed to keep GMSTs be-
low these targets, it is important to know how GMST has pro-
gressed since pre-industrial times. However, the Paris Agree-
ment is not conclusive as regards methods to calculate it.
Should trend progression be deduced from GCM simulations
or from instrumental records by (statistical) trend methods?
Which simulations or GMST datasets should be chosen, and
which trend models? What is “pre-industrial” and, finally,
are the Paris targets formulated for total warming, originat-
ing from both natural and anthropogenic forcing, or do they
refer to anthropogenic warming only? To find answers to
these questions we performed an uncertainty and sensitivity
analysis where datasets and model choices have been var-
ied. For all cases we evaluated trend progression along with
uncertainty information. To do so, we analysed four trend ap-
proaches and applied these to the five leading observational
GMST products. We find GMST progression to be largely
independent of various trend model approaches. However,
GMST progression is significantly influenced by the choice
of GMST datasets. Uncertainties due to natural variability
are largest in size. As a parallel path, we calculated GMST
progression from an ensemble of 42 GCM simulations. Mean
progression derived from GCM-based GMSTs appears to lie
in the range of trend–dataset combinations. A difference be-
tween both approaches appears to be the width of uncertainty

bands: GCM simulations show a much wider spread. Finally,
we discuss various choices for pre-industrial baselines and
the role of warming definitions. Based on these findings we
propose an estimate for signal progression in GMSTs since
pre-industrial.

1 Introduction

Global mean surface temperature (GMST) is undoubtedly
one of the key indicators of climate change. Tollefson (2015)
denotes the GMST indicator as “the global thermostat”. Over
the years many articles have been published in relation to
GMST series and the patterns therein. These patterns com-
bine an anthropogenic signal – induced by growing concen-
tration of greenhouses and processes such as aerosol cool-
ing – as well as natural variability. Natural variability can be
regarded as a correlated noise process consisting of (i) in-
ternal random unforced (chaotic) variability and (ii) exter-
nal radiatively forced changes. Here, internal variability is
steered by short-term processes such as weather in the high
latitudes or El Niño and La Niña, as well as by decadal pro-
cesses such as the Interdecadal Pacific Oscillation (e.g. Tren-
berth, 2015; Fyfe et al., 2016; Xie, 2016; Meehl et al., 2016),
and will result in correlated noise in GMSTs (Mudelsee,
2014; Roberts et al., 2015). Externally forced variability is
mainly due to volcanic eruptions and variations in solar ir-
radiance. It influences global temperatures on annual to cen-
tennial scales (IPCC, 2013 – chap. 10; Forster et al., 2013;
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Mann et al., 2016). A recent realization of internal variabil-
ity led to a fierce debate in the popular media: GMSTs were
showing a claimed “slowdown”, “pause” or “hiatus” from
the year 1998 onwards (e.g. Lewandowski et al., 2015; Hede-
mann et al., 2017; Medhaug et al., 2017 – their Fig. 1).

GMST has been a crucial indicator in climate negotiations
for a long time and it has even become more so at the fol-
lowing 21st Conference of Parties (COP21) in Paris, De-
cember 2015. The final accord, approved by 195 countries,
agreed on GMST targets which aim to avoid increases of
1.5 and 2.0 ◦C compared to pre-industrial temperatures (UN,
2015). IPCC (2014) showed that meeting such GMST targets
will require deep reductions of GHG emissions at the cost of
high investments in mitigation measures worldwide. Given
the fact that all goals are formulated on the basis of this sin-
gle GMST indicator, the question arises: what is the current
GMST level since pre-industrial?

So far, little attention has been paid to this topic.
IPCC (2013), in its attempt to clarify the meaning of
GMST measurements, applied linear trends to three differ-
ent GMST datasets. They reported a trend progression 1µ
of 0.85 [0.65, 1.06] ◦C for the period 1880–2012. The uncer-
tainty range stands for 90 % confidence limits, originating
from differences in datasets, natural variability of the cli-
mate system (forced and unforced). Hawkins et al. (2017)
and Schurer et al. (2017) addressed the topic of trend pro-
gression since pre-industrial and quantified the role of vari-
ous choices for pre-industrial baselines.

Hawkins et al. found that the period 1720–1800 would
be the most suitable in physical terms, despite incomplete
information about radiative forcings and very few direct ob-
servations during this time. Additionally, they concluded that
the 1850–1900 period would be a reasonable surrogate for
pre-industrial GMSTs, being only 0.05 ◦C warmer than the
1720–1800 period. Subsequently, Hawkins et al. analysed
GMST progression since pre-industrial by calculating the
GMST mean over the 20-year period 1986–2005 for various
GMST products and other instrumental data (their Fig. 4).
Trend progression itself was approximated in the study by
multiple regression models with non-stationary explanatory
variables such as historic GHG forcing curves or local tem-
perature series (the Central England Temperature series or
the De Bilt series). Schurer et al. found that GHGs had a sig-
nificant warming effect on global temperatures if the pe-
riod 1401–1800 is compared to 1850–1900: from 0.02 to
0.20 ◦C (90 % confidence limits). If all forcings are combined
(GHG, solar, volcanic), they found a similar warming effect
of 0.09 [0.03–0.19] ◦C.

In this article, we build on the work of Hawkins et al. but
we do not base our GMST progression estimates on linear
regression models with non-stationary regressors. The draw-
back of this approach is simply the linearity assumed, while
the climate system is (highly) non-linear with a number of
feedback processes. The same holds for the approach pro-
posed by Otto et al. (2015) and Haustein et al. (2017), who

apply temperature responses to (i) human-induced forcings
and (ii) natural drivers as explanatory variables in a multiple
regression model where the dependent variable is given by
one of the observational GMST datasets.

Therefore, we follow two other trend estimation
approaches: (i) statistical trend models and (ii) global
temperature trends derived from global climate models
(GCMs). Furthermore, we avoid methods or presentations
based on subjectively selected time windows (such as
Moving Averages). The drawback of time windows is
that averages over 21-year periods or similar do not give
estimates for the beginning and ending of the sample period
chosen (thus, we would have no trend estimates for the
period 2007–2016).

A final topic we address is that of warming definitions.
Should the Paris targets be interpreted as warming due to
both anthropogenic and natural forcings, or as warming due
to anthropogenic warming only? The terms “global warm-
ing” or “total warming” are interpreted in most literature as
the sum of anthropogenic warming plus long-term (decadal
to centennial) natural warming, consistent with the IPCC
definition of climate change (IPCC Annex II, 2014). How-
ever, some researchers interpret “global warming” as anthro-
pogenic warming only, consistent with the definition pro-
posed by UNFCCC in their article 1 (Otto et al., 2015;
Haustein et al., 2017; Millar et al., 2017). In both definitions,
short-term natural variability – such as seen in “the hiatus
period” – is smoothed from warming trends.

Our approach is that of an uncertainty and sensitivity anal-
ysis as promoted by Saltelli et al. (2004), Saisana et al. (2005)
and Visser et al. (2015). We ask the following four major
questions:

– How robust are estimates for GMST progression to spe-
cific choices of trend modelling, use of GCMs and spe-
cific choices of GMST datasets?

– How do these choices influence uncertainties in GMST
progression in relation to uncertainties due to forced and
unforced natural variability?

– Does the choice for a specific pre-industrial baseline or
period play a role?

– Does it matter if we interpret the Paris targets as total
warming or as anthropogenic warming only?

Since there is no “true” or “best” trend approach (Visser
et al., 2015), we explore four trend methods and apply
these to five leading GMST products (similar to Hawkins
et al.). This leads to a 4-by-5 matrix of GMST trend pro-
gressions since 1880. As a parallel path, we compare these
trend progressions to those deduced from GCMs. We anal-
yse an ensemble of 42 GCM experiments from the Coupled
Model Intercomparison Project phase 5 (CMIP5). GCMs are
for a large part physics-based, in contrast to trend methods.
However, there are also drawbacks, the main one being that
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Table 1. Summary of observational datasets used in this study. Descriptions of interpolation schemes are only short indications. Details are
given in the references.

GMST dataset Land
product

SST
product

Interpolation method Period Key references Website

HadCRUT4, CRU
version 4.6

CRUTEM4.6 HadSST3.1 Spatial correlation
structures within (land)
and between (sea) grid
boxes

1850–2016 Morice
et al. (2012)

here

HadCRUT4,
Cowtan and
Way
version 2.0

CRUTEM4.5 HadSST3.1 Infill procedure by
kriging and a hybrid
method guided by UAH
satellite data

1850–2016 Cowtan and
Way (2014)

here

LOTI series,
NASA-GISSTEMP

GHCN v3
and Antarctic
(SCAR) data

ERSSTv4 Weighted averages of
anomalies for all
stations within 1200 km
of that point.

1880–2016 Hansen
et al. (2010)

here

NOAA,
Karl et al.

GHCN-M v3.3 ERSSTv4 Grid-box averaging 1880–2016 Smith
et al. (2008),
Karl
et al. (2015)

here

Berkeley Earth
Project

GHCN
database
(modified
version)

HadSST3
(modified
version)

Infill procedure by
kriging

1850–2016 Rohde
et al. (2013)

here

GCMs are only approximations to the real climate system
and have considerable biases. Although GCMs are tuned to
meet the main characteristics of the present climate (Voosen,
2016), GMSTs derived from GCMs still exhibit a wide range
of trend progression estimates, as we will show.

In the discussion section, we address the role of various
assumptions as for pre-industrial baselines, and differences
in trend progression if Paris targets are interpreted as “total
warming” vs. “anthropogenic warming”.

Our analysis is confined to historical data only (up to and
including 2016). Examples for GMST projections have been
given by IPCC (2013 – chap. 12), Forster et al. (2013), Mann
(2014) and Schurer et al. (2017). A short-term prediction
model is given by Suckling et al. (2016). An example of an
uncertainty and sensitivity analysis of GMST projections has
been given by Visser et al. (2000).

2 Data and methods

2.1 Data

Various research groups have published global GMST
datasets. IPCC (2013 – Sect. 2.4.3) used three datasets,
namely the HadCRUT4 series (Morice et al., 2012; Hope,
2016), the NOAA dataset (Vose et al., 2012) and the
NASA/GISS dataset (Hansen et al., 2010). In the analysis
here, we instead use a recent update of the NOAA data (Karl

et al., 2015). Karl et al. applied a number of corrections
which mainly deal with sea surface temperatures, such as the
change from buckets to engine intake thermometers. In addi-
tion, we added two series, i.e. the version of the HadCRUT4
data in which the missing data have been filled in as pub-
lished by Cowtan and Way (2014) and the GMST series by
Rohde et al. (2013). Note that these datasets are not indepen-
dent. They start from roughly the same station data over land,
and more importantly are based on only two SST analyses:
HadSST3 and ERSSTv4.

Cowtan and Way re-analysed the HadCRUT4 series by
applying a statistical interpolation technique (kriging) and
satellite data for regions where data are sparse. Their series
shows higher GMST values in recent decades than the non-
interpolated HadCRUT4 series due to the more-than-average
warming of the poles. The land part of the GMST data of
Rohde et al. (2013; Berkeley Earth group of researchers)
systematically addressed major concerns of global warm-
ing sceptics, mainly dealing with potential bias from data
selection, data adjustment, poor station quality and the ur-
ban heat island effect. The ocean part (about 70 %) is taken
from HadSST3. A summary of observational data products
is given in Table 1.

Since two out of five GMST products start in the year
1880, we use the period 1880–2016 as our period of analy-
sis. We return to this point in the discussion section. All data
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Figure 1. Graph taken from Callendar (1938). The fourth curve represents his GMST series, based on temperature data of 147 stations. To
highlight smooth changes over time he used moving averages with a window of 10 years. It is interesting to note that he also addressed the
specific effect of CO2 emissions on global temperatures (dashed lines).

were downloaded from the institution websites with 2016 as
the final year.

Next to these instrumental-data-based GMSTs we analyse
three sets of GCM simulations all taken from CMIP5 (Tay-
lor et al., 2012; IPCC, 2013 – chap. 9–12). GMST is defined
here as the global average of near-surface temperature (tem-
perature at surface, “tas”), in contrast to the observational
datasets that use SST over sea for practical reasons (also de-
noted as “blended temperature series”; Cowtan et al., 2015).
The first set consists of GCM simulations where the input
of greenhouse gases from 2005 onwards is taken from three
representative concentration pathways (RCPs): 4.5, 6.0 and
8.5 Wm−2 (Van Vuuren et al., 2011; IPCC, 2014 – Sect. 12.4
and Fig. 12.5). These simulations cover the period 1861–
2100. We have taken a set of 42 GCM simulations with one
member per model for emission scenario RCP4.5 (simula-
tions for the other RCPs partly overlap with this set and are
not considered here). GMSTs from CMIP5 simulations are
based on wide range of modelling differences such as cli-
mate sensitivities, cloud parametrization and aerosol forcing
(e.g. IPCC 2013, chap. 9).

The second set that we have analysed, consists of 37 GCM
runs for natural variability, denoted as “historicalNat”. These
runs comprise forced and unforced natural variability but
no GHG forcing (1860–2005). See Forster et al. (2013) for
details. Finally, we analysed 41 pre-industrial control (Pi-
Control) runs with lengths varying between 200 and 1000
years. These runs simulate natural internal variability only.
All CMIP5 runs were downloaded from the KNMI Climate
Explorer website with one member per model (Trouet and
Van Oldenborgh, 2013).

2.2 Trend modelling

The tracking of signals or trends in GMST series has a long
history. Callender (1938) studied in detail zonal and global
temperatures, along with estimates for warming due to green-
house gases (Fig. 1). To smooth changes he used moving av-
erages with a window of 10 years. A wide range of methods
have been applied since then to isolate long-term signals or
“trends” in GMSTs. We have summarized trend techniques
in Appendix A (Table A1).

As stated in the Introduction we choose statistical trend
methods that allow for the quantification of trend progres-
sion where no window is needed and where uncertainty esti-
mates are available for any incremental trend value. Further-
more, no specific period for pre-industrial has to be chosen
(such as the mean of the 1851–1900 period or similar). “Pre-
industrial” is reflected in the choice of the start of the sample
period only.

Based on these considerations we have selected four trend
approaches for our sensitivity analysis: ordinary least squares
(OLS) linear trends, integrated random walk (IRW) trends
and two approaches with splines. The first trend – a linear fit
by OLS – was chosen by IPCC (2013) as their main method.
Uncertainties simply follow from the linear model:

var(1µ2016)= var([a+ b · 2016] − [a+ b · 1880])

= var(137 · b)= 1372
· var(b), (1)

where “a” is the intercept and “b” the slope. The variance
of “b” follows from the OLS equations. Next to that the vari-
ance estimate is corrected by calculating effective sample
sizes Neff, based on annual data. This correction is important
since residuals are not white noise due to persistence in natu-
ral processes. The signal is therefore considered as noise with
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Figure 2. Construction of 1000 surrogate trend series by MC simulation, based on cubic splines. The AR(1) parameter estimated on the
residuals of the spline model in (a) accounts for 0.28. A surrogate GMST series ŷi,t is formed by simulating a new residual series ri,t based
on the AR(1) process with ϕ = 0.28, and adding it to the estimated spline (green line in a). Then, a spline trend µi,t is estimated for each
surrogate ŷi,t . As an illustration we have plotted 1000 of such trends µ1,t , . . .,µ1000,t in (b). Now, confidence limits can be estimated for
any µt based on the values µ1,t , . . .,µ1000,t . These confidence limits can be based on SDs or percentiles. Similarly, confidence limits can
be calculated for the increment [µ2016−µ1880], based on the values [µ1,2016−µ1,1880], . . . , [µ1000,2016−µ1000,1880] (Mudelsee, 2014 –
Sects. 3.3.3 and 3.4).

a large decorrelation scale in this approach. The Neff correc-
tion method has been explained by Zieba (2010), Chandler
and Scott (2011, Sect. 3.3.3) and IPCC (2013 – 2SM).

The second trend approach that fulfils our uncertainty re-
quirements, are sub-models from the class of structural time
series models (STMs), in combination with the Kalman fil-
ter (Harvey, 1989). From this group of models we choose
the IRW trend model. The IRW trend model extends the lin-
ear regression trend line by a flexible trend while retaining
all uncertainty information (Visser, 2004; Visser et al., 2012,
2015). Furthermore, the flexibility of the trend model is opti-
mized by maximum likelihood (ML) optimization. The IRW
model reads as

yt = µt+ εt and µt− 2µt−1+µt−2 = ηt , (2)

where yt denotes a measurement at time t and µt the trend
component. The terms ηt and εt are independent, normally
distributed white noise processes with zero mean.

The Kalman filter is the ideal filter here since it yields the
so-called minimum mean squared estimator (MMSE) for the
trend component in the model. The Kalman filter has been
applied in many fields of research and is gaining popularity in
climate research recently (e.g. Hay et al., 2015). As with OLS
methods, residuals – or innovations in terms of the Kalman
filter – should be white noise. We will use the Neff correction
method in the case of correlated innovations (if necessary).

A third and fourth approach applies a combination of
a trend model and the statistical structure of natural internal
variability as derived from PiControl runs. It can be seen as
a hybrid approach. To do so we have chosen the cubic spline
trend model, a trend approach also applied in the AR5 (IPCC,
2013 – Box 2.2, Fig. 1). For a theoretical background we re-
fer to Hastie et al. (2001) and Chandler and Scott (2011 –
Sect. 4.1.3).

Smoothing splines are not statistical in nature and, thus,
do not generate uncertainty estimates for GMST increments
1µ2016. However, uncertainty bands can be reconstructed
by Monte Carlo (MC) simulations under the assumption
of a given mean, variance and autocorrelation structure es-
timated directly from the underlying dataset (Mudelsee,
2014 – Sect. 3.3). See Fig. 2 for an illustration.

To steer the flexibility of the cubic spline model we studied
the correlation structure of internal variability. This correla-
tion structure can be described by an AutoRegressive Mov-
ing Average (ARMA) model as proposed by Hunt (2011)
and Roberts et al. (2015). They estimated ARMA models to
a range of PiControl runs. Similarly, we analysed 41 PiCon-
trol runs with lengths varying between 200 and 1000 years.
We found that variability can reasonably be characterized by
AR(1) processes where the AR(1) parameter ϕ varies within
the range [0.0, 0.75], depending on the GCM run chosen (see
Mudelsee, 2014, Sect. 2.1). In this study we have removed
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Figure 3. Results for the IRW trend model as applied to the HadCRUT4 series. Period: 1880–2016. Panel (a) shows the trend (green line)
along with 95 % confidence limits (red dashed lines). The trend increments [µt−µt−1] are given in (b) along with uncertainties. Idem the
[µt−µ1880] values in (c). Panel (d) shows the innovations or one-step-ahead prediction errors which follow from the Kalman filter formulae.
Panel (e) shows the autocorrelation function (ACF).

the lowest and highest two ϕ estimates yielding the range
[0.28, 0.60].

We note that in some cases MA(1) or ARMA(1,1) models
performed somewhat better as checked by comparing AIC
values. Thus, the AR(1) model is a compromise to ease the
analysis. Next to that AR(1) models are widely applied in
climate research (e.g. Mudelsee, 2014).

All four trend methods are designed to smooth GMSTs
for annual to decadal natural variability (forced and un-
forced). However, if Paris targets should be interpreted as
anthropogenic warming only, we should estimate the role of
decadal to centennial forcings from volcanic and solar ac-
tivity as well. To estimate the role of volcanic eruptions we
have extended the OLS linear trend model and the IRW trend
model by adding the aerosol optical depth (AOD) index as
regressor (Visser and Molenaar, 1995; Visser et al., 2015 –
Fig. 4). The extended IRW model reads as

yt = µt+αxt + εt and µt− 2µt−1+µt−2 = ηt , (3a)

where the variable xt stands for the inclusion of an explana-
tory variable (regressor). The AOD index is available from

NASA for the period 1850–2016 (Sato et al., 1993; Ridley
et al., 2014).

We note that if the variance of noise process ηt in
model (3a) is set to zero, the model reduces to the OLS mul-
tiple regression model with one regressor:

yt = α0+α1t +α2xt + εt . (3b)

Thus, model (3b) is a special case of model (3a).

3 Results

3.1 Sensitivity analysis trend methods and data
products

Based on the 1880–2016 GMST sample period we have
evaluated trend progression values 1µ2016 from 1880 up to
2016 along with uncertainties for all datasets and trend ap-
proaches. This yields the 4-by-5 matrix shown in Table 2. As
for linear trends we corrected uncertainty estimates by a fac-
tor
√

(1.60/0.40)= 2.0, analogous to the approach chosen
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Table 2. Trend increments1µ2016 along with 2σ confidence limits. Increments are given for the five GMST series given in Table 1, and the
four trend approaches proposed in Sect. 2.2. Values in bold are row and column averages.

GMST dataset GMST progression 1µ2016 with 2σ confidence limits (◦C)

OLS linear
trend

IRW trend Spline
with ϕ = 0.28

Spline
with ϕ = 0.60

Mean
progression

HadCRUT4, CRU 0.90
(±0.18)

0.93
(±0.17)

0.94
(±0.12)

0.92
(±0.14)

0.92

HadCRUT4,
Cowtan and Way

0.96
(±0.17)

1.06
(±0.17)

1.06
(±0.12)

0.98
(±0.15)

1.02

LOTI series,
NASA

0.98
(±0.19)

1.02
(±0.18)

1.01
(±0.12)

0.99
(±0.14)

1.00

NOAA,
Karl et al.

0.95
(±0.19)

0.96
(±0.19)

0.94
(±0.14)

0.95
(±0.14)

0.95

Berkeley Earth
Project

1.04
(±0.17)

1.12
(±0.17)

1.12
(±0.13)

1.06
(±0.14)

1.09

Mean progression 0.97 1.02 1.01 0.98 1.00

in IPCC (2013 – chap. 2, Supplement) since first-order au-
tocorrelations lie around 0.60. Table 2 shows that the trend
slopes for the datasets HadCRUT4, LOTI-NASA, NOAA-
Karl and Cowtan and Way are close, where the lowest slope
value is for the HadCRUT4 series. This dataset has poor cov-
erage in the Arctic, where trends are much higher than the
global mean. The steepest trend is found for the Berkeley
Earth series. Identical patterns are found for the other trend
models: lowest trend progression for the HadCRUT4 dataset
and highest values for the Berkeley Earth dataset.

As for the IRW trend estimates – formulated in Eq. (2) –
we find reasonable flexible patterns which closely resemble
the spline trend shown in IPCC (2013 – chap. 2: Box 2.2,
Fig. 1b). An example for the HadCRUT4 dataset is shown in
Fig. 3. Data, trend and uncertainties are shown in the upper
panel. The trend increments [µt−µt−1] and [µt−µ1880] are
given in the middle left and right panel, respectively, along
with uncertainties (see explanations given in Visser, 2004).
The [µ2016−µ1880] value with uncertainty is taken as the
value in Table 2. The lower left panel shows the innovations
or one-step-ahead prediction errors which follow from the
Kalman filter formulae. The lower right panel shows the au-
tocorrelation function (ACF). We note that a prerequisite of
Kalman filtering is that the innovations – also denoted as one-
step-ahead prediction errors – follow a white noise process.
The ACF shows an AR(1) value of 0.30 which is slightly
significant. We applied the Neff correction for compensating
for this the violation by applying the approach of IPCC, as
we did for linear trends: uncertainty bands are corrected by
a factor

√
(1.30/0.70)= 1.3.

As for smoothing splines, we have estimated trends in
GMST series such that the residual series exhibits an AR(1)
process with a ϕ value of 0.28 and 0.60. Trend estimates

based on the HadCRUT4 series are shown in Fig. 3. The
spline approaches show quite different trend patterns. The
model shown in the upper panel of Fig. 4 is based on
a slightly correlated noise process and – as for the IRW trend
from Fig. 3 – closely resembles the spline trend shown in
IPCC (2013 – chap. 2: Box 2.2, Fig. 1b). The model shown
in the lower panel shows a parabolic shape. This parabolic
pattern closely resembles the anthropogenic signal in GMST
series as shown by IPCC (2013 – Fig. 10.1f), derived from
“historicalGHG” simulation runs (Forster et al., 2013).

It is interesting to note that none of the four trend methods
show a sign of a “hiatus”, “slowdown” or “pause”. That is
not surprising for the linear trend and the spline estimate with
ϕ = 0.60 due to their stiff character. However, the IRW trend
and spline with ϕ = 0.28 are more flexible and do not show
any stabilization pattern for recent years at all. We tested the
residuals of the IRW trend model and these appear to be close
to white noise (see lower panels of Fig. 2). This inference is
consistent with recent findings on the hiatus (Marotzke and
Forster, 2015; Hedemann et al., 2017; Medhaug et al., 2017;
Rahmstorf et al., 2017).

Table 2 shows that differences between trend model
and dataset combinations can be considerable. The lowest
1µ2016 value is found for the HadCRUT4 dataset in com-
bination with the IRW trend model: 0.90± 0.18 ◦C (± 2σ ).
The highest values are found for the Berkeley Earth dataset
in combination with cubic spline interpolation and ϕ = 0.28:
1.12± 0.13 ◦C. These two extremes reveal that the range of
1µ2016 values due to datasets and trend models accounts for
0.22 ◦C. This range is somewhat lower than that due to nat-
ural variability alone. Based on 2σ limits, we find a low es-
timate of ± 0.12 ◦C, leading to a maximum range of 0.24 ◦C
(LOTI dataset in combination with cubic spline interpolation

www.clim-past.net/14/1/2018/ Clim. Past, 14, 1–17, 2018
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Figure 4. Two smoothing spline estimates for the HadCRUT4 GMST series, with uncertainties generated by MC simulation. All confidence
limits are based on 1000 surrogate GMST series following the approach set out in Mudelsee (2014 – Sect. 3.3.3). (a) AR(1) parameter chosen
as ϕ = 0.28 (equivalent to 7 degrees of freedom), the low end of ϕ values within CMIP5 PiControl runs. (b) AR(1) parameter chosen as
ϕ = 0.60, the high end of ϕ values (DF= 3).

and ϕ = 0.28), and a high estimate of ± 0.19 ◦C, leading to
a maximum range of 0.38 ◦C (three combinations in Table 2).

To quantify the role of trend methods in more detail we
have averaged trend estimates over the five GMST datasets
and added it to Table 2 (bottom row). It shows that the range
of trend progressions is small: [0.97, 1.01] ◦C. At the other
hand, if we average over trend methods, the variability due
to datasets is found (right column of Table 1). The variabil-
ity accounts for [0.92, 1.09] ◦C. Clearly, variability due to
GMST datasets is dominant over specific trend approaches.

3.2 Trend progression derived from GCM simulations

Trend progression derived from GCMs have been anal-
ysed in a range of studies, e.g. IPCC (2013 – chap. 10),
Forster et al. (2013), Marotzke and Forster (2015), Mann
et al. (2016) and Meehl et al. (2016). Here, we derive trend
progression since pre-industrial by taking an ensemble of
42 GCM all-forcing simulations 1861–2016. We note that
underlying models have quite different characteristics, such
as climate sensitivities, various models for greenhouse gas
cycling models, cloud parametrization and aerosol forcing.
However, we did not perform a sensitivity analysis for these
factors.

Short-term forced and unforced natural variability in
individual GCM simulations is smoothed by estimating

splines to each individual simulation (both for ϕ= 0.28 and
ϕ= 0.60, as in Fig. 4). In this way we find 42 values for
1i,2016 ≡ yi,2016−yi,1861. Results are shown in Fig. 5 (based
on smoothing splines with ϕ = 0.28). The mean 12016 value
is 1.17± 0.50 ◦C (2σ ) for smoothing all 42 curves with
ϕ = 0.28 and 1.01± 0.52 ◦C for smoothing with ϕ = 0.60.
These values are consistent with those reported by Forster
et al. (2013, Table 3).

The GCM simulations analysed here differ from data prod-
ucts as for their definition of temperatures (“tas only” vs.
blended temperatures). Cowtan et al. (2015) and Richard-
son et al. (2016 – Fig. 1) showed that tas temperatures differ
from blended temperatures by 0.10 ◦C, for the period 1860–
2009. Thus, mean GCM-derived warming estimates cover
the ranges [1.00–1.15] ◦C (tas) or [0.90–1.05] ◦C (blended).
We note that these ranges reasonably correspond to the range
found in Table 2.

4 Discussion

4.1 Uncertainty and sensitivity analysis

We make three comments concerning the robustness of the
results given in Sect. 3. First, as summarized in Table A.1 of
Appendix A, a wide range of trend models exist in the lit-
erature, all with varying characteristics. The fact that many

Clim. Past, 14, 1–17, 2018 www.clim-past.net/14/1/2018/
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Figure 5. Histogram based on 42 GCM 1i,2016 values, relative to 1861. Mean value is 1.17± 0.50 ◦C (2σ ). Individual GCM curves were
smoothed by splines, where the AR(1) parameter is chosen as ϕ = 0.28 (equivalent to 7 degrees of freedom), the low end of ϕ values within
CMIP5 PiControl runs.

Table 3. GMST progression 1880–2016 with and without correction for volcanic activity (see Fig. 6). Values in bold are column averages.

GMST dataset GMST progression 1µ2016 with 2σ confidence limits (◦C)

OLS linear
trend

IRW trend OLS linear trend
with regression
on AOD

IRW trend with
regression on
AOD

HadCRUT4,
CRU

0.90
(± 0.18)

0.93
(± 0.17)

0.89
(± 0.18)

0.89
(± 0.17)

HadCRUT4,
Cowtan and Way

0.96
(± 0.17)

1.06
(± 0.17)

0.94
(± 0.18)

1.01
(± 0.17)

LOTI series,
NASA

0.98
(± 0.19)

1.02
(± 0.18)

0.97
(± 0.20)

0.98
(± 0.18)

NOAA,
Karl et al.

0.95
(± 0.19)

0.96
(± 0.19)

0.94
(± 0.20)

0.95
(± 0.19)

Berkeley Earth
Project

1.04
(± 0.17)

1.12
(± 0.17)

1.02
(± 0.17)

1.07
(± 0.17)

Mean progression 0.97 1.02 0.95 0.98

of these methods are not statistical in nature does not limit
their application in the present context: the approach shown
in Fig. 2 (creating surrogate GMST series by MC simula-
tion) is also applicable to methods such as binomial filters
or LOESS estimators. Therefore, we cannot rule out that the
influence of trend modelling is underestimated in Table 2.
However, given the (i) small differences shown in the bottom
row of Table 2, and (ii) the wide uncertainty bands due to
natural variability, we judge such an underestimation to be
relatively small.

A second comment concerns a source of uncertainty deal-
ing with the choice for year or period that can be regarded
as “pre-industrial”. As for the analyses in Sect. 3.1, we have
chosen the year 1880 as low end of the sample period, simply
because two out of five GMST products start in 1880 (NASA
and NOAA). Both NOAA and NASA reason that SST data
for the pre-1880 period are too sparse (Hansen et al., 2010 –
indentation [15]).

The choice for 1880 is consistent with that made by IPCC
(2013) as for historic trend progression (without claiming
this to be “since pre-industrial”). In Sect. 3.2 we have chosen
the year 1861 as low end of the sample period, again since
simulations are available from that year onwards.

Would our results and conclusions from Table 2 or Figs. 3
and 4 be different if the sample period were enlarged, starting
in 1400, 1720 or 1850? Strictly speaking, we cannot answer
this question since we cannot extend our analyses to these
starting years due to data availability. As for the instrumen-
tal dataset, we could perform some analyses from 1850 on-
wards but GMST estimates become inaccurate for these early
decades. However, estimates based on GCM simulations are
given by Hawkins et al. (2017) and Schurer et al. (2017).

Hawkins et al. show that the GMST difference between
the two periods 1720–1800 and 1850–1900 is small, around
0.05 ◦C, lying on the edge of statistical significance. Ad-
ditionally to their analysis we compared GMST mean val-

www.clim-past.net/14/1/2018/ Clim. Past, 14, 1–17, 2018
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Figure 6. The AOD index series as introduced by Sato et al. (1993). Period is 1850–2016.

ues over three periods: 1850–1900, 1860–1880 and 1880–
1900, based on the HadCRUT4 dataset. The mean val-
ues appear to be similar: −31± 0.03 ◦C, −0.31± 0.06 ◦C
and −0.32± 0.05 ◦C, respectively (2σ limits). These dif-
ferences are small if compared to the uncertainties due to
natural variability, shown in Table 2. These results suggest
that the choice for 1720–1800, 1850–1900, 1860–1880 or
1880–1900 as “pre-industrial” will have a small influence
to the findings presented here. At the other hand, Schurer
et al. show from GCM simulations that global warming is
underestimated by 0.09 [0.03, 0.19] ◦C if the period 1401–
1800 is chosen as pre-industrial baseline (compared to the
period 1850–1900). Their estimate for the influence of GHG
only lies close to these estimates, in the range from 0.02
to 0.20 ◦C. We conclude that recent simulations point to an
underestimation of global warming if calculated relative to
late nineteenth century estimates. The underestimation lies
around 0.10 ◦C.

A third comment deals with differences in warming defini-
tions as mentioned in the Introduction. If the Paris targets are
to be interpreted as anthropogenic warming only, we should
estimate these contributions as well. Clearly, the incremen-
tal estimates 1µ2016 shown in Table 2 do not contain cor-
rections for decadal to centennial natural forcings from solar
and volcanic activity. To estimate the role of volcanic activity
on the estimates given in Table 2 we have extended the OLS
linear trend and the IRW trend model with a regression com-
ponent, where GMST series are regressed on the OAD in-
dex shown in Fig. 6, following models (3a) and (3b). Results
are summarized in Table 3. The table shows that incremen-
tal estimates 1µ2016 are overestimated by 0.02 ◦C for linear
trends and by 0.04 ◦C for IRW trends. A reason for this over-
estimation could be the high volcanic activity for the period
1880–1890, containing the peak eruption of the Krakatoa).

To estimate the role of long-term solar activity we did
not choose for the time-series approach above since any ex-
planatory variable in a regression model with some long-term
trend will correlate and “explain” the long-term trend in the
dependent variable (the cyclic pattern in solar radiance is not

reflected in GMTs as shown by a number of studies, e.g.
Schurer et al., 2017 – Fig. S3). Therefore, we prefer to use
GCM estimates to quantify the role of solar activity.

IPCC (2013) estimates the role of solar variability to be
small and on the edge of significance. Incremental solar forc-
ing for the period 1750–2011 accounts for 2 [0, 4] % of GHG
forcing (Figure SPM.5 and Box 10.2). Schurer et al. (2017 –
Fig. S3) estimate the incremental contribution of solar forc-
ing on GMSTs to be 0.07 [0.02, 0.12] ◦C. This estimate com-
pares the period 1850–1900 to 1990–2000. Furthermore, the
long-term influence of volcanic activity is non-significant in
their simulations (their Fig. S2).

Next to these estimates we analysed an ensemble of 37
GCM simulations with natural forcing only (“historicalNat”;
IPCC, 2013 – Figs. 10.1 and 10.7; Forster et al., 2013 –
Fig. 2). The mean curve with 2 standard errors (SEs) is shown
in Fig. 7, along with major volcanic eruptions (eruptions with
a volcanic explosivity index of 5 and 6). Mean trend progres-
sion for these 37 runs accounts for 0.078± 0.030 ◦C (2 SE),
1861–2005.

From these inferences we conclude that the difference be-
tween total warming and anthropogenic warming lies around
0.10 ◦C with an uncertainty range of [0.0, 0.14].

4.2 Policy recommendation

Schurer et al. (2017) end their article with the recommenda-
tion that a consensus be reached as to what is meant by pre-
industrial temperatures. In this way, the chance would be re-
duced of conclusions that appear contradictory being reached
by different studies. Furthermore, it would allow for a more
clearly defined framework for policymakers and stakehold-
ers. We fully agree with this recommendation. However, our
uncertainty and sensitivity analysis has shown that the choice
of a proper pre-industrial baseline is not the only parame-
ter that could lead to contradictory results. Decisions around
data products and GCM simulations, various time series
techniques, or assumptions on warming definitions should be
taken into account as well.

Clim. Past, 14, 1–17, 2018 www.clim-past.net/14/1/2018/
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Figure 7. Natural variability based on 37 GCM simulations. Shown are mean values along with 2 standard errors. Period is 1861–2005.

Here, we make the following policy proposal which aims
to be a reasonable compromise. First, we propose to base
GMST warming estimates on data products rather than GCM
simulations. Our argumentation is that12016 values based on
GCM simulations show a wide range of warming estimates
(Fig. 5). We note that even wider ranges are found for abso-
lute GMST estimates (CMIP5 estimates for the mean GMST
value over the period 1961–1990 show a range of 2.5 ◦C ac-
cording to IPCC 2013 – Fig. 9-8). Another argument is that
forcing estimates from CMIP5 are accurate up to the year
2005 (estimates for 2006–2016 apply to approximations for
GHG concentrations, with no volcanic or solar activity).

Second, since warming estimates vary as a function of the
GMST data products chosen (Table 2), we propose to esti-
mate trends on the annual averages of all five data products.

Third, we found that the choice for specific trend methods
plays a minor role, with largest differences between stiff and
more flexible trend models. Therefore, we propose to apply
a flexible and a stiff trend method and average the warming
estimates found.

Fourth, two studies on the role of pre-industrial base-
lines have been published recently. Schurer et al. (2017)
find a GHG-induced warming in the range [0.02, 0.20] ◦C
if the period 1401–1800 is compared to the period 1850–
1900. Hawkins et al. (2017) define the period 1720–1800 as
a reasonable baseline for pre-industrial and find small non-
significant differences between the period 1720–1800 and
1850–1900. We choose to follow the baseline proposed by
Hawkins et al. Since GMST observational data are uncertain
in the pre-1880 period (sparse SST data) and GMST mean
values for 1850–1900 and 1880–1900 appear to be of equal
size (based on the HadCRUT4 data product), we propose to
analyse trend progression from 1880 onwards.

Finally, we propose to interpret global warming in the
context of “Paris” as the sum of natural and anthropogenic
warming, consistent with the IPCC definition of climate
change. One argument for this choice is that ecological sys-
tems and human society will respond to total warming and
induced shifts in climate extremes regardless of its origin.

From these choices it follows that trend progression12016
accounts for 1.00± 0.13 ◦C (bottom row of Table 2). It is
interesting to compare this estimate with that published re-
cently by Haustein et al. (2017). They find for GMST warm-
ing the incremental value 1.01 [0.87, 1.22] ◦C, which is close
to our findings. This is remarkable since their estimate is
based on another approach and quite different assumptions.

5 Conclusions

We have addressed the issue of signal progression of GMST
in relation to the GMST targets agreed upon in Paris in De-
cember 2015. Although these targets are clearly defined –
avoiding increments of 1.5 and 2.0 ◦C – there remain a num-
ber of (scientific) questions unanswered in the agreement.
We have identified five aspects of the accord which hamper
an exact quantification of GMST progression: (i) the use of
instrumental data and trend methods vs. GCM-derived pro-
gression, (ii) the role of varying datasets, (iii) the role of
varying trend methods, (iv) the role of varying choices for
pre-industrial and (v) the role of warming definitions. Since
there is no “true” or “best” approach (Visser et al., 2015),
we have chosen to perform an uncertainty and sensitivity on
GMST progression as propagated by Saltelli et al. (2004) and
related articles. This allows us to test the robustness of vari-
ous trend progression claims.

Approaches based on instrumental data. We find that trend
values for GMST progression 1880–2016 vary considerably,
from 0.90 ◦C (HadCRUT4 dataset in combination with the
IRW trend model) to 1.12 ◦C (Berkeley Earth dataset in
combination with cubic spline interpolation and ϕ = 0.28).
The two extremes reveal that the range of 1µ2016 values
due to datasets and trend models accounts for 0.22 ◦C. This
range is smaller than that due to natural variability alone.
Based on 2σ limits, we find a low estimate of 0.24 ◦C (LOTI
dataset in combination with cubic spline interpolation and
ϕ = 0.28) and a high estimate of 0.38 ◦C (three combinations
in Table 2). Furthermore, variability due to various GMST
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products dominates the variability due to specific trend ap-
proaches.

Approaches based on GCMs. We find that mean trend
progressions lie within the range of estimates from instru-
mental data. However, the uncertainty bands for 42 simula-
tions are much wider than those derived from instrumental
trend estimates. Here, GCM variability stems from a wide
range of modelling assumptions such as climate sensitivities,
cloud parameterization and aerosol forcing (e.g. IPCC, 2013,
chap. 9), in addition to natural variability.

The choice of a pre-industrial period. Recent studies
have shown that GHG warming prior to 1880 or 1850 can-
not be neglected. Schurer et al. (2017) estimate that early
warming (1401–1800 compared to 1850–1900) accounts for
0.09 [0.03, 0.19] ◦C. The role of solar and volcanic activity is
minimal in this comparison.

Interpretation of Paris targets as being “total warming”
or “anthropogenic warming only”. We find that the role of
solar and volcanic activity is small on centennial scale. This
contribution lies around 0.10 ◦C (0.03 ◦C from volcanic ac-
tivity and 0.07 ◦C from solar activity; see Sect. 4.1 for an
explanation).

Hiatus. As a side result of our trend analyses we note
that no signs of an “hiatus”, “slowdown” or “pause” can
be discerned in GMST trend progression. This inference is
consistent with recent findings (Marotzke and Forster, 2015,
Hedemann et al., 2017, Medhaug et al., 2017, Rahmstorf
et al., 2017).

Policy recommendation. Schurer et al. (2017) recom-
mend that a consensus be reached as to what is meant by
pre-industrial temperatures. Our analysis shows that other
sources of uncertainties should be taken into account as well.
If not, contradictory results will appear in different studies
with direct consequences for CO2 reductions to hold GMSTs
below the Paris targets. Our proposal shows a GMST pro-
gression 12016 of 1.00 ◦C.

Code availability. IRW trends have been estimated by the
TrendSpotter software. This software package is freely available
from the first author. Splines have been estimated by the statistical
package S-Plus, version 8.2. The scripts, which are highly similar
to R, are available from the first author.

Data availability. All five GMST datasets are open access and
have been downloaded from the authors websites. All CMIP5 runs
named in Sect. 2.1 were downloaded from the KNMI Climate Ex-
plorer website with one member per model (Trouet and Van Old-
enborgh, 2013). The names of individual GCMs can be found there
as well. Please see https://climexp.knmi.nl/cmip5_indices.cgi?id=
someone@somewhere. Data used for the graphical presentations in
this article can be gained from the first author.
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Appendix A: An overview of trend methods, applied
to GMST observational data

In our study we have selected trend models which not only
estimate a trend over time but also yield uncertainties for
trend increments. However, this requirement appears to limit
our model choices considerably. First, many methods are not
statistical in nature, such as moving averages (Hansen et al.,
2010; Smith et al., 2015; Fyfe et al., 2016), binomial filters
(Morice et al., 2012), wavelets with scale dependencies (Lin
and Franzke, 2015), EEMD decomposition (Wei et al., 2015;
Yao et al., 2015) or linear trends based on stair-step averages
with variable lengths (De Saedeleer, 2016). A historic exam-
ple is given in Fig. 1, based on the work of Callender (1938).

Next to that, a number of methods do not generate es-
timates at the beginning and ending of the GMST series
due to the dependence on “windows”. Examples are moving
averages, OLS linear trends with moving windows (Risbey
et al., 2015; Marotzke and Forster, 2015) and the staircase
approach by De Saedeleer (2016).

Trend models applied to GMST datasets can be catego-
rized methodological into three groups:

– Empirical models. These are trend models which are in
principle data-based and may be steered by qualitative
physical insights, such as the choice of a fixed window
in combination with moving averages (Easterling and
Wehner 2009; Hansen et al., 2010; Cowtan and Way,
2014; Roberts et al., 2015). Other trend models are OLS
linear trends with varying sample periods (IPCC, 2013 –
Box 2.2, Fig. 1a; Karl et al., 2015; Rajaratnam et al.,
2015), linear trends with change points (Cahill et al.,
2015), binomial filters (Morice et al., 2012), splines
(IPCC, 2013 – Box 2.2, Fig. b), EEMD decomposition
(Wei et al., 2015; Yao et al., 2015), structural time series
models (Visser and Molenaar, 1995; Mills, 2006, 2010)
and long-memory trend models (Lennartz and Bunde,
2009; Rea et al., 2011).

– Semi-empirical methods with stationary regressors.
These methods are also data-based but physics may en-
ter trend estimates by adding stationary climate indices
in the context of regression models. An example is given
by Forster and Rahmstorf (2011), who apply a linear re-
gression model with three regressors (MEI, AOD and
TSI). Other references are Visser and Molenaar (1995),
Yao et al. (2015) and Trenberth (2015).

– Semi-empirical methods with non-stationary regressors.
These models differ from semi-empirical models in
that non-stationary regressors are used as well, such as
global CO2 emissions. Typical examples are given by
Imbers et al. (2013) and Hawkins et al. (2017). An ex-
ample where GMST data are treated as regressor to
model global sea levels has been given by Rahmstorf
(2007).

A detailed description of methods is given in Table A1.
For background information please see Chandler and Scott
(2011), Mudelsee (2014) and Visser et al. (2015).

From the range of available trend methods we selected
trend methods from the group of empirical models and semi-
empirical models, with our main selection criterion being
that models contain full uncertainty information for trend es-
timates and trend increments. Based on this criterion we se-
lected Models (4), (8), (16), (19) and (21). As for Model (8)
we explained the construction of uncertainties in Fig. 2.

Furthermore, we decided not to use models from the semi-
empirical approaches with non-stationary regressors. First,
there is a danger of finding associations rather than causal re-
lations since any two series with a long-term trend correlate
high, whatever their origin (Nuzzo, 2014). Second, relations
in the climate system are (highly) non-linear and we prefer
to rely on GCM simulations rather than forcing indicators for
GHGs, aerosols or solar activity which serve as regressors
in a multiple regression model. Thus, we prefer the mod-
els named in Table A1 under the heading “Semi-empirical
approaches, stationary regressors” over “Semi-empirical ap-
proaches, non-stationary regressors”.

www.clim-past.net/14/1/2018/ Clim. Past, 14, 1–17, 2018
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Table A1. Summary of three groups of modelling approaches to global mean temperatures: (i) empirical, (ii) semi-empirical with stationary
regressors, and (iii) semi-empirical with non-stationary regressors. In the fourth column the presence of uncertainties for rates of change is
given ([µt−µs ]± ?). The term “not explicitly” means that uncertainties could be calculated in principle but not shown by the author(s).

Empirical approaches [µt−µs ]
± ?

1 Decadal aggregation, no trend Callendar (1938 – figure SM.1), IPCC (2013 – figure
SPM.1a and Fig. 2.19)

no

2 Moving averages with prescribed window length (vary-
ing from 5 to 50 years)

Callendar (1938), Easterling and Wehner (2009),
Hansen et al. (2010, Fig. 9), Kokic et al. (2014),
Cowtan and Way (2014), Roberts et al. (2015) Smith
et al. (2015), Fyfe et al. (2016)

no

3 OLS linear trends, with various corrections for corre-
lated noise

Rajaratnam et al. (2015) yes

4 OLS linear trends for varying sample periods, with cor-
rections for correlated noise

IPCC (2013 – chap. 2: Box 2.2, Fig. 1a), Karl
et al. (2015), this study

yes

5 OLS linear trend with moving windows Risbey et al. (2014), Marotzke and Forster (2015) only for
[µt−µt−1]

6 Linear trends with change points (CP) Cahill et al. (2015), Rahmstorf et al. (2017) not explicitly
7 Linear trends, based on stair step averages with variable

lengths
De Saedeleer (2016) yes, by colour

graphs
8 Splines with Monte Carlo simulation IPCC (2013 – chap. 2: Box 2.2, Fig. 1b), this study (with

CMIP5-derived AR(1) noise)
yes

9 21-term binomial filter Morice et al. (2012) no
10 Hodrick–Prescott and Butterworth low-pass filters Mills (2006) no
11 Smooth transition trends Mills (2006) no
12 Adaptive filtering with padding Mann (2008) no
13 Wavelets with scale dependencies Lin and Franzke (2015) no
14 EEMD decomposition Wei et al. (2015), Yao et al. (2015) no
15 ARIMA decomposition Mills (2006) no
16 IRW trend model, part of the STM group of models Visser and Molenaar (1995), Mills (2006, 2010), model

(2) of this study
yes

17 Long memory trend models Lennartz and Bunde (2009), Rea et al. (2011) no

Semi-empirical approaches, stationary regressors

18 Linear for selected PDO regimes Trenberth (2015) no
19 Multiple regression models with linear trend, aerosols

and solar
Forster and Rahmstorf (2011), model (3b) of this study yes

20 EEMD decomposition with correlations PDO and
AMO

Yao et al. (2015) no

21 STMs with regressors Visser and Molenaar (1995), model (3a) of this study yes

Semi-empirical approaches, non-stationary regressors

22 Regression models with GHGs, SOI, TSI, volcanic,
ARMA noise

Kokic et al. (2014) not explicitly

23 Cointegration, ARIMA, trend breaks, RF, GHGs Kaufmann et al. (2006, 2013) not explicitly
24 Regression models with ENSO, AMO, GHG, solar,

aerosols and AR(1) noise
Imbers et al. (2013),
reprinted in IPCC (2013 – chap. 10)

not explicitly

25 Regression models with forcings from GHGs, aerosols,
solar activity, volcanic activity and Nino3.4 as regres-
sors

Hawkins et al. (2017, their approach 1) yes

26 Scaling model with local temperature series as regres-
sors (CET, De Bilt)

Hawkins et al. (2017, their approach 3) yes

27 Regression model with temperature responses to
human-induced forcings and natural drivers as explana-
tory variables. Various GMST observational datasets
serve as dependent variable.

Otto et al. (2015), Haustein et al. (2017) yes
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