Surface N balances and reactive N loss from global intensive agricultural production systems for the period 1970-2030

Third International Nitrogen Conference, Nanjing, 12-16 October 2004

A.F. Bouwman¹, G. Van Drecht¹ and K.W. Van der Hoek²

¹Netherlands Environmental Assessment Agency ²Laboratory for Environmental Monitoring National Institute for Public Health and the Environment P.O. Box 1, 3720 BA Bilthoven The Netherlands

Accelerated global N cycle

(million ton/yr as N)

Surface balance approach

Denitrification and leaching

Upland crops

 $f_{\text{lea}} = \int (\text{climate}, \text{soil texture}, \text{drainage}, \text{carbon})$

$$N_{\text{den}} = (1-f_{\text{lea}}) N_{\text{pot}}$$

 $N_{\text{lea}} = f_{\text{lea}} N_{\text{pot}}$

Wetland rice

 $f_{\text{den}} = 0.75$ (based on measurements) $f_{\text{lea}} = 0.25$

FAO World
Agriculture
Towards
2030
country
data

0.5 by 0.5 degree resolution

Image-team (2001)

FAO World Agriculture **Towards** 2030 country data

0.5 by 0.5 degree resolution

Image-team (2001)

IMAGE Production systems

Mixed systems

Close to urban areas, rivers Fertilizers, different feedstuffs Manure storage and application 0.5 by 0.5 degree grid cell

Pastoral systems and marginal grassland

More remote from urban areas

Upland crops

Wetland rice

Legumes

Grassland

Limited manure storage and appioning the file of the tweether countries countries countries

Bouwman et al. Pedosphere (in press)

IMAGE production systems

Inputs

IMAGE land use projection

IMAGE land use projection

Intensive agriculture 2030

Animal densities (ruminants) 2030)

Bouwman et al. Agricultural Systems (2004)

Surface nutrient balance

FAO World Agriculture Towards 2030:

N and P fertilizer use for 1970, 1995 and 2030

	1970	1995	2030	
	N fertilizer use			
	(Mton yr ⁻¹ as N)			
Developing countries	9	50	73	
Industrialized countries	15	24	30	
Transition countries	7	5	6	
World	32	79	109	
	P fertilizer use			
	(IV	(Mton yr ⁻¹ as P ₂ O ₅)		
Developing countries	4	19	37	
Industrialized countries	12	10	14	
Transition countries	5	1	2	
World	21	31	52	

For allocation: Fertilizer use by crop (FAO/IFA/IFDC, 2003) Upland crops
Wetland rice
Legumes
Grassland

N balance upland crops 1995

N fertilizer

N manure

N deposition

N uptake

1970

N surplus = total N inputs - crop/grass export

1995

N surplus = total N inputs - crop/grass export

2030

N surplus = total N inputs - crop/grass export

Surplus for OECD countries were compared with OECD and Eurostat

Surplus for OECD countries were compared with OECD and Eurostat

N balance 1995

China cropland

Zhu & Chen Bouwman *et al.* (2002)-1998 (in press)-1995 (Mton yr⁻¹)

OUTPUTS

Fertilizer	25	24
Manure	5	4
Biological fixation	3	3
Atm. deposition	2	3
Total	36	33

Accumulation and retention in subsoil and groundwater

Harvest	15	13
Gaseous loss	12	15
Leaching + runoff	2	5
Unaccounted for	6	-
Total	36	33

Fertilizer use efficiency Overall system N recovery

$$FUE = \frac{\text{crop N export}}{\text{N fertilizer} + \text{manure N input}}$$

For wetland rice and upland crops, excluding legumes

Overall system N recovery =
$$\frac{\text{crops} + \text{grass}}{\sum \text{N inputs}}$$

Fertilizer, manure, biological N fixation, deposition

Fertilizer use efficiency upland crops 1995

Current N deficit systems may change into systems with surpluses

Fertilizer use efficiency (%) wetland rice + upland crops

Soil N depletion

DIFFERENCES HAVE MANY CAUSES:

Soil N depletion

Climate/soils

Productivity

Management

Over-fertilization

Wetland rice

Legumes

DIFFERENCES HAVE MANY CAUSES:

Soil N depletion Climate/soils Productivity Management **Over-fertilization**

Wetland rice

Legumes

DIFFERENCES HAVE MANY CAUSES:

Soil N depletion Climate/soils Productivity Management **Over-fertilization**

Mix of crops (wetland rice)

Legumes

DIFFERENCES HAVE MANY CAUSES:

Soil N depletion Climate/soils Productivity Management Over-fertilization
Wetland rice

Legumes

DIFFERENCES HAVE MANY CAUSES:

Soil N depletion Climate/soils Productivity Management Over-fertilization Wetland rice Legumes

Intensive systems: N loss in % of inputs

N loss is complement of system N recovery

Concluding remarks

- Considerable improvement of N recovery is possible
- But, differences in reactive N loss and system N recovery reflect a host of factors:
- -Agro-ecological resources (soils, climate)
- -Management
- -Mix of crops (wetland rice, legumes)
- So, recovery and its improvement can not be the same everywhere
- Current N deficit systems may change into systems with surpluses
- Concentration of livestock and crop production

Thank you!