



PBL Netherlands Environmental  
Assessment Agency

## ADVICE OFFSHORE WIND TENDER 2026

Maximum tender amount for the TOWOZ-concept

**Sander Lensink, Chris Henriquez**

**16-01-2026**

PBL

## Colophon

### Advice offshore wind tender 2026: Maximum tender amount for the TOWOZ-concept

© PBL Netherlands Environmental Assessment Agency

The Hague, 2026

PBL publication number: 5971

#### Corresponding author

[sde@pbl.nl](mailto:sde@pbl.nl)

#### Author(s)

Sander Lensink, Chris Henriquez

#### Acknowledgements

We would like to thank M. Kloosterman, K. Tunarli, W. Jaworski (DNV).

#### Visualisations

Beeldredactie PBL

#### Production coordination

PBL Publishers

#### Accessibility

PBL attaches great importance to the accessibility of its products. Should you encounter any access-related problems when reading them, please contact us at [info@pbl.nl](mailto:info@pbl.nl), stating the title of the publication and the issue you are experiencing.

Parts of this publication may be reproduced, providing the source is stated, in the form:

Lensink, S., C. Henriquez, (2026), *Advice offshore wind tender 2026: Maximum tender amount for the TOWOZ-concept*, The Hague: PBL Netherlands Environmental Assessment Agency.

PBL Netherlands Environmental Assessment Agency is the national institute for strategic policy analysis in the fields of the environment, nature and spatial planning. We contribute to improving the quality of political and administrative decision-making by conducting outlook studies, analyses and evaluations in which an integrated approach is considered paramount. Policy relevance is the prime concern in all of our studies. We conduct solicited and unsolicited research that is both independent and scientifically sound.

# Contents

|                                               |           |
|-----------------------------------------------|-----------|
| <b>Summary</b>                                | <b>4</b>  |
| <b>1      Introduction</b>                    | <b>5</b>  |
| 1.1    Request for advice                     | 5         |
| 1.2    Approach                               | 5         |
| 1.3    Subject wind farms                     | 6         |
| 1.4    Subsidy scheme                         | 7         |
| <b>2      Methodology</b>                     | <b>8</b>  |
| 2.1    Process                                | 8         |
| 2.2    Responses from the consultation        | 9         |
| 2.3    Full load hours                        | 11        |
| 2.4    Correction amount                      | 12        |
| 2.5    Base electricity price                 | 12        |
| 2.6    Tender amount                          | 12        |
| <b>3      Results</b>                         | <b>14</b> |
| <b>References</b>                             | <b>16</b> |
| <b>Appendix A: Guidelines (English/Dutch)</b> | <b>17</b> |

# Summary

The Ministry of KGG (Climate and Green Growth) of the Dutch national government has asked the Netherlands Environmental Assessment Agency PBL to give advice on the maximum tender amount to be used in the upcoming wind offshore subsidy tender for the sites Nederwiek 1 and 2, and IJmuiden Ver Gamma. This tender is known as TOWOZ (*Tijdelijk Ondersteuningsmechanisme Windenergie Op Zee*, which translates to Temporary Support Mechanism Offshore Wind Energy). Our advice includes parameters relating to the revenues of wind offshore, notably the base energy price and the correction amount.

Our advice on the maximum tender amount defines the amount sufficient for the majority of the interested market parties to expect a positive business case. The amount should not be read as the current costs of offshore wind energy. We expect the actual tender bids to be substantially lower than this maximum amount. On the other hand, the bids will likely be higher than the expected market value of the electricity produced.

We advise a maximum tender amount of 0.104 Euro/kWh; only the offshore location Nederwiek 2 requires somewhat less subsidy. We assume that the subsidy is paid out over the first 15 years of production, starting in 2031, with the bulk of the investment occurring two years prior. Note that the tender amount is a nominally constant value for 15 years.

We recommend calculating the correction amount by multiplying the yearly averaged day-ahead price EPEX by a profile factor. This profile factor is determined ex-post using a generic factor based on a representative production profile for offshore wind energy in the Netherlands. While a more location-specific profile factor could mitigate risks for wind farm developers, it may complicate data collection for ex-post calculations and diminish market incentives for operational decisions.

Based on the Climate and Energy Outlook 2025 (PBL, 2025), we expect the long-term captured price to be 0.0565 Euro/kWh on average. This leads to a floor in the correction amount, the so-called base electricity price, of 0.0377. This includes a long-term profile factor of 0.768.

This advice is drafted with support of DNV. As part of the research done for this report, we have spoken with several market parties chosen by PBL. We have incorporated and documented their main feedback in this advice.

# 1 Introduction

## 1.1 Request for advice

The Ministry of KGG (Climate and Green Growth) of the Dutch national government has asked the Netherlands Environmental Assessment Agency PBL to give advice on the maximum tender amount to be used in the upcoming wind offshore subsidy tender for the sites Nederwiek and IJmuiden-Ver Gamma. The subsidy tender is known as the TOWOZ (*Tijdelijk Ondersteunings-mechanisme Windenergie Op Zee*, which translates to Temporary Support Mechanism Offshore Wind Energy). The advice includes parameters relating to the revenues of wind offshore, notably the base energy price and the correction amount. This report assumes that the TOWOZ subsidy will be paid out following the current SDE++ subsidy scheme (Stimulation of sustainable energy production and climate transition).

We have requested the Ministry of KGG for specific guidelines in drafting this advice. We have included the guidelines in full in Appendix A, but we do want to highlight two important aspects. First of all, we calculate a maximum tender amount that is sufficient for the majority of the interested market parties to expect a positive business case. Secondly, we calculate the correction amount as a generic value that is valid for the average of all the subsidy-receiving offshore wind farms. The correction amount and the base electricity price do not represent wind farm-specific values, whereas the maximum tender amount applies specifically to a single wind farm.

## 1.2 Approach

To prepare this advice, we asked DNV to make calculations on the expected costs of wind farms for various locations. Subsequently, we requested several select market parties for feedback on these costs. We have not conducted a consultation on the tender legislation, as this legislation itself is not part of our advice. As methodological approach, we used the market responses and available information on previous tenders to validate the DNV calculations to the most recent market conditions. In cooperation with DNV, we adjusted the cost assumptions accordingly.

## 1.3 Subject wind farms

This advice considers the offshore wind farms that are next in line to be tendered in the Netherlands. According to a letter submitted to the Dutch Parliament in April 2025, these are: IJmuiden Ver Gamma, split into two lots of 1 gigawatt (GW); Nederwiek 1 (South), also split into two lots of 1 GW; and Nederwiek 2 (North) with a lot size of 2 GW (see Table 1 below for all data). We have illustrated their locations in Figure 1 below. Note that IJmuiden Ver Alpha and Beta have already been permitted and that Nederwiek 3 is not considered in this report as it is not part of the request for advice.

**Table 1**  
Wind farms under consideration

| Wind farm               | Lot size | Commercial operation date |
|-------------------------|----------|---------------------------|
| IJmuiden Ver Gamma (A)  | 1 GW     | Q1 2031                   |
| IJmuiden Ver Gamma (B)  | 1 GW     | Q2 2031                   |
| Nederwiek (South) 1 (A) | 1 GW     | Q4 2030                   |
| Nederwiek (South) 1 (B) | 1 GW     | Q4 2031                   |
| Nederwiek (North) 2     | 2 GW     | Q2 2032                   |

**Figure 1**  
Wind farm locations to be tendered



## 1.4 Subsidy scheme

Advice on the required subsidies differs from a generic cost assessment due to the interaction with the subsidy scheme and other legislative context. This context can be found in the [Actieplan Windenergie op Zee \(KGG, 2025\)](#). Although the offshore wind tenders are at the front-end different tenders than the generic SDE++ tenders, at the back-end the subsidy payments for offshore windfarms will be following SDE++ legislation. It implies that this report addresses the maximum tender amount (*Maximum tenderbedrag*), the calculation method for the correction amount (*correctiebedrag*) and the base electricity price (*basiselektriciteitsprijs*). The tender amount resembles the levelised cost of energy, the correction amount resembles the captured electricity price. The base electricity price is the floor of the correction amount, below which the subsidy will no longer compensate for extremely low electricity prices. We assume that the reader of this report is familiar with the SDE++ scheme (though more information can be found on the [website of The Netherlands Enterprise Agency \(RVO\)](#)).

**Table 2**  
Translation table for SDE++ nomenclature

| English                      | Dutch                                  |
|------------------------------|----------------------------------------|
| Maximum tender amount        | Maximum tenderbedrag                   |
| Tender amount (or base rate) | Tenderbedrag ( <i>of basisbedrag</i> ) |
| Correction amount            | Correctiebedrag                        |
| Base electricity price       | Basiselektriciteitsprijs               |

## 2 Methodology

### 2.1 Process

In this advice, we emphasise the maximum tender amount, which we assume as one of the tender criteria. On the other hand, the correction amount and base electricity price are auxiliary parameters that will be weighed in by contestants in their bidding process. For the maximum tender amount, we received assistance from DNV in calculating the expected levelized cost of energy (LCOE) for relevant offshore wind locations. We also received information from RVO on the average cost indicators in previous tenders. This information has not been made available to DNV, but we did use it for validation purposes on the information received from DNV. It is important to point out that the LCOE is not identical to the base amount. Typically, a LCOE calculation does not take into account that the TOWOZ subsidy will be paid out over 15 years, while the economic lifetime of the wind farm is 35 years.

We drafted the advice using the [cashflow model, or Onrendabele Top \(OT\)-model](#), that has been applied for similar SDE++ advices in the past. We take market revenues from electricity sales in the years 16-35 into account. Next, we use the cost parameters on investment costs, operational costs, decommissioning costs, and load factors from the DNV LCOE calculations as inputs for the OT-model.

## 2.2 Responses from the consultation

At our request, several market parties have supplied us with information in response to preliminary PBL/DNV cost findings. These parties can be seen mostly, but not exclusively, as potential tender contestants. Table 3 below shows an overview of the responses received and our reaction to them.

**Table 3**  
Summary of consultation

| Consultation information                                                                                                                                   | Response by PBL/DNV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Many capital expenditure (CapEx) components have higher costs, most notably the wind turbine supply costs and the foundation installation costs.           | We have narrowed the time frame of our analysis to place more emphasis on the latest cost developments. This increases various cost components, most notably the wind turbine costs. We increased the contingency from 5-8% of total investment costs.                                                                                                                                                                                                                                                       |
| CapEx is underestimated due to lead time of CapEx expenditures. Cost escalation in the years until construction is also not adequately taken into account. | We have not detailed the cash flow to specify the timing and amounts of CapEx expenditures in the years leading up to the start of operations. The responses on time-dependent CapEx expenditures show significant variation. We approximated that the CapEx will be spent, on average, two years before start of operation. The start of operation, and the start of the subsidy payment, is assumed to be in 2031. Therefore, CapEx expenditures, including cost escalation, are assumed to occur in 2029. |
| The Operations & Maintenance (O&M) costs are higher than projected.                                                                                        | With the specifications supplied in the consultation, we have looked closer at the insurance costs. It leads to a moderate increase in projected O&M costs.                                                                                                                                                                                                                                                                                                                                                  |
| Finance cost (WACC) are considered too low.                                                                                                                | The responses vary greatly, from significantly below return expectations to largely in line with industry standards. We use a +0,25 pp for cost of debt compared to wind onshore to accommodate for the difference in technological risk.                                                                                                                                                                                                                                                                    |
| The projected electricity yield, represented by the full load hours, takes cluster wake effects only rudimentary into account.                             | Indeed, we have not used the most sophisticated yield production tools. Note that the number of full load hours that we use in our calculation, only impacts the maximum tender amount to a minor extent. The actual subsidy base over which the subsidy will be paid out, is not impacted by our calculation.                                                                                                                                                                                               |
| We prefer a subsidy duration of 20 years to reduce the merchant risk.                                                                                      | We have passed this comment on to KGG. In this report, we assume TOWOZ subsidy to be paid out of 15 years, in line with the SDE++ scheme.                                                                                                                                                                                                                                                                                                                                                                    |

| <b>Consultation information</b>                                                                                                                                                                                                                                                                 | <b>Response by PBL/DNV</b>                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <p>Projected electricity prices, imbalance costs and GoO prices are within market expectations. Some prices, notably GoO's, are seen as somewhat aggressive on the long term. Great uncertainty exists in the future development in imbalance costs.</p>                                        | <p>We have not made any alterations in the assumptions. The electricity prices are derived from the <a href="#">Energy and Climate Outlook 2025</a>. The Guarantee of origin prices and imbalance costs reflect our assessment of the current market value. We have no future projections for these components available.</p> |
| <p>The calculation of the profile factor in the correction amount is to be more tailor-made. If not calculated on a single wind farm, then it should be calculated only on the data of nearby wind farms.</p>                                                                                   | <p>We have passed this comment on to KGG. We point out the benefit of the SDE++ and thus the TOWOZ using a generic value, as it maintains desirable market incentives. Therefore, we advise against calculating the profile factor on only a single wind farm.</p>                                                            |
| <p>The base rate is defined as <math>2/3</math> of the long term electricity price. Given a high volatility of the market in recent years, we propose a review on this factor <math>2/3</math>.</p>                                                                                             | <p>We have passed this comment on to KGG. We see no immediate need for a review on this factor, but we do acknowledge that the base electricity prices in the SDE++ are for some subsidy rounds more stringent than for other subsidy rounds.</p>                                                                             |
| <p>Significant risk exists due to the negative pricing. The PBL approach seems to be based on a decline in negative pricing that is relatively strong compared to various commercial projections, but not the most extreme. A more cautious treatment of revenues is nevertheless proposed.</p> | <p>Our assumption on negative pricing is a gradual decline in the first 15 years of exploitation, thus between 2031 and 2046. We maintain this assumption, but acknowledge the uncertainty of the future developments.</p>                                                                                                    |
| <p>Since offshore wind energy has limited options for flexibility compared to for example onshore solar pv, we advocate an ex-post correction factor in the correction amount, to compensate for the loss of production due to negative pricing.</p>                                            | <p>We have passed this comment on to KGG. We acknowledge that any ex-ante assumption for the negative pricing leaves significant risk to be handled by the market parties.</p>                                                                                                                                                |
| <p>Assume a 15% cost increase due to Net Zero Industry Act (NZIA) legislation, as it is the level of the waiver above which NZIA measures don't need to be taken.</p>                                                                                                                           | <p>The NZIA implementation is not yet clear. We assume that the NZIA will not lead to significantly more costs than compared to business as usual. If the implementation becomes more stringent, one should keep our assumption in mind as it would limit the validity of our advice.</p>                                     |
| <p>Assume a 0.0013 euro/kWh increase in O&amp;M costs due to a possible feed-in grid tariff. This is based on the high end of our expectations of ACM proposals.</p>                                                                                                                            | <p>We do not take the feed-in grid tariff into account in this advice. As such, one should read our advice as assuming that neither costs nor (regulatory) risks concerning any feed-in grid tariff exist at the time the offshore wind tender will be opened.</p>                                                            |
| <p>Significant risk exists if a TDTR (time-dependent transport rights) is implemented.</p>                                                                                                                                                                                                      | <p>We have passed this comment on to KGG. The same disclaimer applies as above concerning the feed-in grid tariff.</p>                                                                                                                                                                                                        |

## 2.3 Full load hours

The electricity production of the wind farms is characterised by full load hours. In the LCOE calculation, DNV models a park layout based on the available areas and exclusion zones. A grid of 15 MW turbines is rotated according to the wind rose and fitted where the turbine inter-array and intra-array spacing is adjusted so that the target number of turbines fits within the available area.

The following two turbine interactions are taken into account:

- Internal wake and blockage effects occurring within the wind farm itself, due to loss of kinetic energy in the wind, which results in a slower and more turbulent airflow behind the turbine. This disturbed airflow affects downstream turbines within the same wind farm, reducing their efficiency and power output.
- External wake, on the other hand, is the wake effect that results from neighbouring wind farms. The external wake losses take the influence of wind farms within a 60 km radius into account. It considers the 35 years' production period, including the commissioning and decommissioning dates of other wind farms.

Internal wake effects are calculated in relation to the aforementioned park layout. External wake effects are calculated separately.

Recently, there has been a noticeably increasing amount of negative priced hours on the electricity market. We take the approach that we've also applied in the [advice for the SDE++ 2025 \(annex 7\)](#), where we assume a gradual decline of the number of negative priced hours from the current 500 to 0 in a period of 15 years. We project this decline over the period 2031-2045. This assumed development is highly dependent on a substantial increase in flexibility in the electricity market. For each negatively priced hour, we assume 0.6 full load hour loss since the negatively priced hours do not fully correlate with the production of wind offshore. We apply an annual loss of 160 full load hours to all wind farms for the first 15 years of production. The uncertainty of this estimation is high. Table 4 shows the build-up of the full load hours and the underlying loss factors. Note that we include the wind farms of IJmuiden-Ver alpha and beta for purposes of comparison. The information that we show for those sites are calculated by DNV and PBL and they do not depict actual or realised data, but only modelled data.

**Table 4**  
Impacts from various losses on yield calculation

| Wind farm   | Wind power density [MW/km <sup>2</sup> ] | Internal wake [%] | External wake [%] | Other losses [%] | Grid limit losses [%] | Cable losses [%] | Availability losses [%] | Negative priced hour losses [h/yr] | Full load hours [h/yr] |
|-------------|------------------------------------------|-------------------|-------------------|------------------|-----------------------|------------------|-------------------------|------------------------------------|------------------------|
| IJV-A       | 10.7                                     | 91.8              | 95.1              | 87.4             | 99.9                  | 99.5             | 96.3                    | 160                                | 3729                   |
| IJV-B       | 10.1                                     | 92.1              | 92.7              | 85.5             | 99.9                  | 99.5             | 96.4                    | 160                                | 3659                   |
| IJV-G lot A | 11.2                                     | 92.6              | 91.7              | 85.9             | 99.9                  | 99.4             | 96.4                    | 160                                | 3703                   |
| IJV-G lot B | 10.2                                     | 93.1              | 91.7              | 86.2             | 99.9                  | 99.4             | 96.4                    | 160                                | 3738                   |
| NW-1 lot A  | 13.5                                     | 92.0              | 94.4              | 87.8             | 99.9                  | 99.4             | 96.4                    | 160                                | 3756                   |
| NW-1 lot B  | 13.5                                     | 92.0              | 94.4              | 87.8             | 99.9                  | 99.4             | 96.4                    | 160                                | 3756                   |
| NW-2        | 10.5                                     | 92.9              | 96.3              | 89.2             | 99.9                  | 99.4             | 96.3                    | 160                                | 3852                   |

## 2.4 Correction amount

The SDE++ calculates the correction amount, or captured price, as one generic value for offshore wind energy. It follows the formula of the average wholesale electricity price multiplied by a profile factor. Note that the formula for the correction amount for existing wind farms also contains a component to compensate for balancing costs. However, due to new state aid rules, it is no longer possible to correct for balancing costs ex-post, thus it cannot be included in the formula for the correction amount any longer.

We calculate the balancing costs at 0.0080 euro/kWh real value for which we top up the base amount. This value is derived from offshore wind data from 2023 and 2024, see table 4 on page 11 of [the PBL publication on profile and balancing costs](#) (Henriques et al, 2024). The generic wind offshore correction amount intends to take the weighted average of the profile factor of all wind farms into account. The weighing factors are the installed capacities of the wind farms as defined by guidelines from the Ministry of KGG.

Wind farms are eligible to receive tradeable guarantees of origin (GO). The current price for Dutch renewable GOs lies around 0.0020 euro/kWh, whereas European GOs tend to have lower prices. One could argue that the price for GOs will approach zero when most of the electricity produced in Europe is of renewable origin. Still, we expect a minor commercial value to remain throughout the production period.

We advise to calculate the correction amount as the EPEX x profile factor WOZ + GO. The EPEX is the Dutch day ahead market. The profile factor was 0.905 in 2023 and 0.900 in 2024.

## 2.5 Base electricity price

The base electricity price – the floor for the correction amount – is defined as two-thirds of the long-term electricity price. The long-term electricity price is derived from the Climate and Energy Outlook 2025 (PBL). The expected wholesale electricity price is 0.0736 euro/kWh and the profile factor is 0.768 over the next 15 years, which we calculate as based on Climate and Energy Outlook 2025 data. It gives an average long-term captured price of 0.0565 euro/kWh. The base electricity price is two-thirds of this value which equals 0.0377 euro/kWh. The base price risk premium is set at 0.0020 euro/kWh, which includes the variable costs.

## 2.6 Tender amount

The investment and operation costs are taken from the calculations by DNV. Installation, operation, and maintenance cost are all assessed by DNV based on ports' proximity, selected strategies, vessel number, etc. Installation costs for turbines and foundations include cost items such as vessel day rate, project management, sea fastening and equipment costs, while for inter-array cables installation cost rate is fixed per unit metre. Operational costs include vessel cost items such as SES (surface effect ships), CTV (crew transfer vessels), service base costs, scheduled and unscheduled maintenance costs, parts and consumables, overhauls, technicians, etc. Decommissioning costs are calculated based on DNV's internal expertise. A contingency of 8% of the total investment costs is taken into account.

Development costs are estimated as 5% of capital expenditures. They are not included in the total investment costs, but are taken into account in the return on investment. Table 5 below shows the cost build-up for the various sites. The investment costs are assumed to be spent in 2029 and commercial exploitation starts at the beginning of 2031. Note that we include the wind farms IJmuiden Ver alpha and beta for purposes of comparison. The information that we show for those sites are calculated by DNV and PBL; they do not depict actual or realised data, but only modelled data.

**Table 5**  
Cost build-up of the wind farms in euro<sub>2025</sub>

| Wind farm | Total investment <sup>a)</sup><br>[euro/kW] | Wind turbine supply<br>[euro/kW] | Wind turbine installation<br>[euro/kW] | Foundation supply<br>[euro/kW] | Foundation installation<br>[euro/kW] | Array<br>[euro/kW] | O&M<br>[euro/kW/y] | Decommissioning<br>[euro/kW] |
|-----------|---------------------------------------------|----------------------------------|----------------------------------------|--------------------------------|--------------------------------------|--------------------|--------------------|------------------------------|
| IJV-A     | 2537                                        | 1302                             | 117                                    | 629                            | 138                                  | 162                | 42.4               | 133                          |
| IJV-B     | 2555                                        | 1302                             | 116                                    | 635                            | 137                                  | 175                | 42.4               | 133                          |
| IJV-G (a) | 2566                                        | 1302                             | 121                                    | 622                            | 146                                  | 184                | 46.1               | 133                          |
| IJV-G (b) | 2581                                        | 1302                             | 121                                    | 622                            | 146                                  | 198                | 46.1               | 133                          |
| NW-1 (a)  | 2603                                        | 1302                             | 123                                    | 635                            | 147                                  | 203                | 47.3               | 133                          |
| NW-1 (b)  | 2603                                        | 1302                             | 123                                    | 635                            | 147                                  | 203                | 47.3               | 133                          |
| NW-2      | 2581                                        | 1302                             | 119                                    | 635                            | 140                                  | 194                | 43.6               | 133                          |

a) Including 8% contingency; excluding 1% financing costs and development costs

In the years 16-35 of operation, we consider the income for electricity sales and costs of operation and maintenance. Together, they form the building blocks for the economic value at year 16. Note that the Ministry of KGG asks us to take this economic value into account when calculating the tender amount. For the decommissioning costs, it is relevant in which year of operation the project takes the costs. The actual costs occur at the end of the project in year 36. On the other hand, in project financing a reserve account is not uncommon for these types of costs. We assume that the reserve account will be created in year 16; thus, after the subsidy period expires. As such, we consider the reserve account as lowering the economic value of the project in year 16.

The cost of capital takes the cost of debt, cost of equity and tax into account. The guidelines of the Ministry of KGG tell us to approach the cost of capital from the perspective of a project-financed wind farm. This is considered a valid assumption by consulted market parties, and it makes it more transparent to take the technology specific risks into account, while bypassing any sector specific equity requirements. We assume that the financing costs of offshore wind farms are close to those of large onshore wind farms. For offshore wind energy we use return on debt of 4.5% and return on equity of 10% at a gearing of 70/30, thus 70% debt. Note that the development costs are included in the 10% return on equity. We expect the return on debt for offshore wind energy to be 0.25 percentage points higher than that of onshore wind energy to compensate for the higher technological risk.

# 3 Results

This chapter presents the results of our findings. We end the chapter with some comments that may help to interpret the results. Table 6 shows the resulting subsidy parameters. By comparing the results shown (which are derived from DNV and PBL studies), with other non-disclosable information, we note that the differences in underlying parameters can be substantial. There are larger variations, most notably for the discount rate or WACC, the full load hours and the captured electricity price. The data on investment and operational costs seem more robust, but experience larger deviation due to a recent increase in prices. Note that we include the wind farms of IJmuiden Ver alpha and beta for purposes of comparison. The information that we show for those sites are calculated by DNV and PBL; they do not depict actual or realised data, but only modelled data.

**Table 6**  
Subsidy parameters for offshore wind energy in TOWOZ 2026

| Wind farm | Tender amount<br>[euro/kWh] | Full load hours<br>[h/yr] | Base electricity price<br>[euro/kWh] | Correction amount formula         |
|-----------|-----------------------------|---------------------------|--------------------------------------|-----------------------------------|
| IJV-A     | 0.101                       | 3729                      | 0.0377                               | EPEX-NL x profile factor WOZ + GO |
| IJV-B     | 0.103                       | 3659                      | 0.0377                               | EPEX-NL x profile factor WOZ + GO |
| IJV-G (a) | 0.104                       | 3703                      | 0.0377                               | EPEX-NL x profile factor WOZ + GO |
| IJV-G (b) | 0.103                       | 3738                      | 0.0377                               | EPEX-NL x profile factor WOZ + GO |
| NW-1 (a)  | 0.104                       | 3756                      | 0.0377                               | EPEX-NL x profile factor WOZ + GO |
| NW-1 (b)  | 0.104                       | 3756                      | 0.0377                               | EPEX-NL x profile factor WOZ + GO |
| NW-2      | 0.099                       | 3852                      | 0.0377                               | EPEX-NL x profile factor WOZ + GO |

## Uncertainties

The tender amounts shown take considerable uncertainties into account. Therefore, an advice for a maximum tender amount can be based on the tender amounts calculated. There is a balance between the expected costs of offshore wind energy and the maximum tender amount. On the one hand, a maximum tender amount that is lower, makes the risk of over-subsidisation lower in case the competition between contestants is not strong. On the other hand, a maximum tender amount that is sufficiently high, may attract more tender contestants. The more tender contestants, the stronger one may expect the competition to be. We take this effect into account while giving an advice based on the tender amounts that we calculated. We do not take into consideration government budget reservations or budget allocations in the advice.

## Maximum tender amount

We advise a maximum tender amount of 0.104000 euro/kWh for the upcoming tenders. Only for the Nederwiek 2 site, we advise to use a lower maximum tender amount of 0.099000 euro/kWh. The base electricity price is for all cases 0.037694 euro/kWh. Our advice on the maximum tender amount defines the amount as being sufficient for the majority of the interested market parties to expect a positive business case. The amount should not be read as the current costs of offshore wind energy. We expect the actual tender bids to be substantially lower than this maximum amount. On the other hand, one may expect the bids still to be higher than the expected market value of the electricity produced.

### **Expected increase in tender amounts**

Since the last tenders for offshore wind energy in the Netherlands did not require subsidies, the tender amounts can be considered as quite high. We would like to comment on this perspective with three points. First of all, the costs of offshore wind energy have risen in recent years. Not only the global economic developments are causing the increase, but the tension in the supply chain is also mentioned by market parties as causing an additional cost increase. Many European countries have committed themselves to 2030 targets, but the intentions beyond 2030 are less clear. A short-term boost of ambition with fewer long-term ambitions makes it more difficult to make long-term investments in the supply chain.

Secondly, the expected market revenues – in other words, the profit of sales of electricity – are more uncertain than before. As a result, long term PPAs with favourable conditions for wind offshore developers are more difficult to negotiate.

Finally, policy risk increases as several potentially cost-increasing measures are under consideration. Examples include the Dutch implementation of the Net Zero Industry Act and a possible feed-in grid tariff. Even if the actual implemented measures will not be too demanding, they currently pose a cost-increasing challenge that developers can hardly influence or mitigate. Therefore, we consider it plausible that current relative high subsidy requirements will not need to be sustained over the next decade, provided that electrification of society progresses and international long-term planning of wind offshore creates favourable conditions for investments in the supply chain.

# References

Henriquez, C. and others (2025), Definitieve correctiebedragen 2024, Den Haag: Planbureau voor de Leefomgeving.

KGG (2025), Actieplan windenergie op zee, Ministerie van Klimaat en Groen Groei, 16 september 2025, Den Haag.

PBL (2025), Klimaat- en energieverkenning 2025, Planbureau voor de Leefomgeving, 2025, Den Haag.

# Appendix A: Guidelines (English/Dutch)

The Ministry of KGG has asked PBL to give advice on the maximum tender amount, correction amount calculation, and base electricity price for the TOWOZ 2026 with regard to the wind farms at IJmuiden-Ver gamma (lot A and lot B), Nederwiek 1 (lot A and lot B), and Nederwiek 2. Following a subsequent request of PBL, KGG has provided the following guidelines to prepare the advice. The original guidelines are in Dutch (reproduced below), but an English translation has been made specifically for this report. No other guidelines or directions from KGG exist other than the ones mentioned in this appendix. The guidelines have not been altered in any way, due to the recent consultation of market parties by PBL.

## Concept assumptions tenders TOWOZ 2026 (English)

### In general

- The projects to be granted permission for, for which advice from PBL was requested, can be realised with the calculated maximum tender amount.
- The maximum tender amount is understood as: the average sum of investment and operational costs that can be attributed to the produced amount of electricity, plus a reasonable profit margin, divided by the expected amount of produced electricity.
- Costs incurred for the development of the offshore wind farm prior to an SDE++ application are not included.
- Participation costs are considered as profit sharing.
- The base amounts are calculated taking into account the laws and regulations known on June 1, 2025, which will come into effect on January 1, 2026.
- If known government policy intentions are expected to have a significant impact on the base amounts, further consultation with the Ministry of KGG will take place.
- It is assumed that new installations are used. Existing installations do not qualify for subsidy.
- The base price premium is compensation for the risk that the price falls below the base energy price. In such a case, the full non-profitable margin is no longer reimbursed. This base price premium is determined based on a risk premium depending on price volatility and long-term projection of the relevant market index.
- Imbalance costs are included in the calculation of the maximum tender amount, but profile costs are not.

### Financial

- The maximum tender amounts are expressed in Euros/kWh.
- Project financing is assumed.
- Effects of advance funding or banking are not taken into account.
- Consequences of the revenue threshold amount are not considered.
- The residual value of an installation after the subsidy period is taken into account.
- The duration of the subsidy is 15 years.

## Offshore wind

- The assumptions from the offshore wind plot decision of Nederwiek 1a are used.
- The permit duration is 40 years, consisting of approximately 5 years for construction and 35 years for operation, including decommissioning at the end of that period.
- Costs for the removal of the wind farm are included in the calculation of the maximum tender amount.
- Insight is requested into whether and to what extent the NZIA (Net-Zero Industry Act) criteria contribute to increased costs.

## Correction amounts

- The correction amount is the relevant average market price of the produced energy in the production year.
- The market index for electricity is the quarter-hour average price of the EPEX day ahead.
- When determining the market index and profile costs for electricity, periods with a negative price, notably each period with a negative price, are disregarded.
- In determining the profile factor for offshore wind energy, a weighted average based on the installed capacity in megawatts of all wind farms with an SDE approval is used.
- For electricity, the value of the guarantee of origin for grid delivery is requested.

## Base prices

- The level of the base energy price amounts to two-thirds of the long-term energy price.
- The long-term energy price is derived from the most recent KEV.
- The long-term energy price is the numerical average of the real energy prices over the next 15 years.
- The calculation method for the base energy price follows the calculation method for correction amount for the category, except that the market index is replaced by the long-term energy price.
- Advice is requested on the level of profile costs for offshore wind energy. These profile costs are determined generically for the whole of the Netherlands.

# Concept uitgangspunten Tenders WOZ 2026 (Dutch)

## Algemeen

- De te vergunnen projecten, waarvoor advies van PBL wordt gevraagd, kunnen gerealiseerd worden met het berekende maximum tenderbedrag.
- Onder het maximum tenderbedrag wordt verstaan: de gemiddelde som van investerings- en exploitatiekosten die kunnen worden toegerekend aan de geproduceerde hoeveelheid elektriciteit, plus een redelijke winstmarge, gedeeld door de te verwachten hoeveelheid geproduceerde elektriciteit.
- Kosten die gemaakt worden ten behoeven van de ontwikkeling van het windpark op zee voorafgaand aan een SDE++-aanvraag worden niet meegenomen.
- Participatiekosten worden gezien als winstdeling.
- De basisbedragen worden berekend met inachtneming van de op 1 juni 2025 bekende wet- en regelgeving die op 1 januari 2026 van kracht zal zijn.
- Indien bekende beleidsvoornemens van de overheid naar verwachting een grote impact hebben op de basisbedragen, zal nader overleg met KGG plaatsvinden.
- Er wordt uitgegaan van nieuwe installaties. Bestaande installaties komen niet in aanmerking voor subsidie.
- De basisprijspremie is een vergoeding voor het risico dat de prijs onder de basisenergieprijs zakt. In dat geval wordt niet langer de volledige onrendabele top vergoed. Deze basisprijspremie wordt bepaald op basis van een risicopremie afhankelijk van de prijsvolatiliteit en langetermijnprojectie van de relevante marktindex.
- Onbalanskosten worden meegenomen bij de berekening van het maximum tenderbedrag, profielkosten niet.

## Financieel

- De maximum tenderbedragen worden in euro/kWh uitgedrukt.
- Er wordt uitgegaan van projectfinanciering.
- Er wordt geen rekening gehouden met effecten van bevoorschotting of banking.
- Er wordt geen rekening gehouden met gevolgen van het opbrengstgrensbedrag.
- Er wordt rekening gehouden met de restwaarde van een installatie na afloop van de subsidieperiode.
- De looptijd van de subsidie is 15 jaar.

## Wind op Zee

- Er wordt uitgegaan van de uitgangspunten in het kavelbesluit van Nederwiek 1a.
- De vergunningsduur is 40 jaar, waarvan circa 5 jaar bouwtijd en 35 jaar exploitatie, en ontmanteling aan het einde van die periode.
- Kosten voor het verwijderen van het windpark worden meegenomen in de berekening van het maximum tenderbedrag.
- Gevraagd wordt naar inzicht of en in welke mate de NZIA-criteria kostenverhogend werken.

## Correctiebedragen

- Het correctiebedrag is de relevante gemiddelde marktprijs van de geproduceerde energie in het productiejaar.
- De marktindex voor elektriciteit is de kwartiergemiddelde prijs van de EPEX day ahead.
- Bij het bepalen van de marktindex en de profielkosten voor elektriciteit worden de periodes met een negatieve prijs gedurende elke periode met een negatieve prijs buiten beschouwing gelaten.
- Bij de bepaling van de profelfactor van windenergie op zee wordt en één gewogen gemiddelde, op basis van het opgesteld vermogen in megawatt, van alle windparken met een SDE-beschikking gebruikt.
- Voor elektriciteit wordt gevraagd wat de waarde van de garantie van oorsprong voor netlevering is.

## Basisprijzen

- De hoogste van de basisenergieprijs bedraagt twee derde van de langetermijnenergieprijs.
- De langetermijnenergieprijs wordt afgeleid uit de recentste KEV.
- De langetermijnenergieprijs is daarbij het numerieke gemiddelde van de reële energieprijzen in de komende 15 jaar.
- De berekeningswijze van de basisenergieprijs volgt de berekeningswijze van het correctiebedrag voor de categorie, zij het dat de marktindex vervangen wordt door de langetermijnenergieprijs.
- Voor de profielkosten van windenergie op zee wordt advies gevraagd over de hoogte van deze kosten. Deze profielkosten worden generiek voor heel Nederland bepaald.